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PREFACE

This volume is the annual progress report of the Rock Magnetism and Paleogeophysics
Research Group in Japan for the year 1989. We have published annual reports with a title
Annual Progress Report of the Rock Magnetism (Paleogeophysics) Research Groups in Japan in
1963, 1964, 1965, and 1967. Since 1973, the title changed to Rock Magnetism and Paleogeo-
physics and the reports were published annually (except 1976).

As the previous reports were so, this volume contains a collection of summaries, extended
abstracts or brief notes of the research works carried out in our group this year. Many of the
reports contain materials which may undergo a significant change or may be revised as the
research activity continues. In this respect, readers are warned to regard them as tentative, and
are also requested to refer from a complete paper if such is published as a final result. (Names
of journals appear at the end of individual articles if they are in press, submitted, or in prepara-
tion for submission to some scientific journals).

This is the last year of the DELP Program and also the last year for me to serve as the edi-
tor of this annual report. When I began in 1973, I did not think that I will be continuing to do
so for more than five years. However, the volumes served as good media to inform the foreign
colleagues what we are up to in Japan. We have had large number of quotations from outside
Japan. At present, there are divided opinions in our group regarding the future of the annual
report, As many of the works nowadays are published in international journals without much
delay, some think that we do not need such media any more. On the other hand, there are also
opinions that the information channel cultivated in the last 16 years became too valuable to
abandon so lightly. The future, therefore, depends on the decision of our group to be made
within 1990, and also on the responses received from the colleagues overseas who are receiving
them. I would like to take this opportunity to thank the authors for contributing the abstracts for
the past volumes, and to the readers in general who encouraged us for this publication. As a
token of thanks from the outgoing editor to the authors and readers of Rock Magnetism and
Paleogeophysics, 1 have prepared a permuted index for Volumes 1 to 16 inclusive.

This volume is published with a financial aid from Ministry of Education, Science and Cul-
ture for the Dynamics and Evolution of the Lithosphere Project (DELP). It is Publication No. 29
of the Japanese DELP Program.

Tokyo
December 1989

Masaru Kono
Editor

Rock Magnetism and Paleogeophysics
Research Group in Japan
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ABRUPT JUMP IN THE MAGNETIC TOTAL FORCE AT THE BLAST BY GUN
POWDER -INTERPRETATION BY REMANENT MAGNETIZATION

Hideo SAKA 1, Hiroyuki ODAl, Takesi NAKAYAMA2 and
Hikaru DOI

1 Department of Earth Sciences, Faculty of Science,
Toyama University, Gofuku 3190, Toyama, 930, Japan

2 Kamitakara Geophysical Observatory, Disaster
Prevention Research Institute, Kyoto University,
Kami takara, Gifu, 506-13, Japan .

Piezo remanent magnetization (PRM) may exist commonly at the
stress concentrated region. Nagata and Kingihita_ 1965) showed
when the piezo remanence of the order of 10 ‘bar is induced in
the sequence underground, the magnetic total force at the surface
may change in the magnitude of 1 to 10 nT. When the shock is
imposed to the rocks in a quite short period, the remanent
magnetization similar to PRM may be acquired. Nagata (1971)
named it as the SRM (shock remanent magnetization). )

In 1986, October 22, the cooperative research with the
artificial earthquake was made at the Ohtaki village in Nagano
Prefecture (Figure 1). The main purpose of the project (The
joint group of seismological research in western Nagano
Prefecture, 1988) was to investigate the crustal structure around
this area in detail. At this project, we made the observatiory
experiments of the magnetic total force in order to identify what
kind of change in the magnetic force will be induced by the
artificial earthquake. The results may be useful for the
discussion of the stress-induced magnetization.
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Fig. 1. Map of the area where the Fig. 2. Map around the blast point
artificial earthquake experiment (star mark). Double circle represents
was made., The star mark shows the the position of the proton sensor.

blast point.

The artificial earthquake was produced by the blast of 86 Kg
gun powder placed at the depth of 68 m below ground (point A of
Figure 2). The magnetic total force was measured by a proton
precession magnetometer (Barringer model GM 122) which was
modified to record the data on the printer. We get it 33 m from




the blast point. The sensor of the magnetometer was positioned
on the aluminum pole of 2 m in height. We supported the aluminum
pole firmly so as to restrain the movement of the sensor at the
blast. The magnetic total force was measured from twenty minutes
before the blast time until three hours after. The data were
sampled at 6 second intervals. The apparatus was run with
battery power.

Figure 3 shows the change of the magnetic total force around
the blast time. The jump of the magnetic force up to 3 nT was
observed at the blast. The general trend in the fluctuation of
magnetic force before and after the blast was concordant with
that of the Amo stationary observatory 50 Km north-westward from
Ohtaki district. The proton sensor was fixed rigorously and the
magnetic gradient was less than 1 nT within a 15 cm radius from
the sensor. Therefore, we could not consider that the movement
of the sensor at the blast have caused the observed change in the
magnetic force. We concluded that the jump of the magnetic force
was induced by the change of magnetic properties underground at
the blast.

TOTAL FORCE

OHTAK! AO
46675 1 .~ OWTAKI | 47097
nT A
........................ nT
46670 L f . - 47092
1986. 10. 22
on : (BLAST)"
46065 0! h — , . , —+ar087
85 0 5 10 32 15 20 30nin 40
TIME

Fig. 3. Variation of the total magnetic force observed around the
blast time (1:12 am). Dotted line shows the data recorded at Amo
station. :

The increment in the magnetic force at the blast did not
decrease during the period of 30 minutes after the shot time
(Figure 3). According to the succeeding observation, the
increment did not decrease after 1 hour from the blast time.

One of the possible cause for this irreversible change in
the magnetic force is the effect of iron casing around the blast
point. The iron casing of the diameter of 120 mm was placed at
the depth from 1.2 to 400 m in order to set the gun powder.
Figure 4 shows the contours map of the magnetic force around the
blast point observed 1 month after the blast time. It suggests
that the iron casing has the effective role for the distribution
of the magnetic force around the blast point. At the blast, the
casing may have been deformed and/or heated to the high
temperatures and the susceptibility (p) of the iron casing may
have changed. This change may have distorted the distribution of
the magnetic force and caused the observed increase of the




magnetic force.

N TOTAL FORCE CONTOURS MAP

46700nT -
co + o+
PROTON + o+
To L T . v
[’ + + + + + + + + 4+ nT
Fig. b Calculated distribution of the
Fig. 4. Contours map of the total magnetic force when the iron
magnetic force arocund the blast casing was placed vertically at the
point observed at the time blast point. We assumed the casing
1 month after the blast, (u=200) of the diameter 120 mm was

set at the depth from 1.3 to 400m.

Figure 5 shows the calculated distribution of the magnetic
force when the iron casing (yi=200) is placed at the blast point.
The distribution of the magnetic force shows the minimum at the
north of blast point and maximum at the south. The observed -
distribution in Figure 4 deflected from the north-south trend in
the calculated distribution. It indicates that the magnetization
underground around this region also contribute to the
distribution of magentic force. The sequence around the blast
region consists of andesites and sedimentary rocks. NRERMs of the
drilled core (sedimentary rocks) at the blast point were
measuggd. 2They showed the reversed polarity with the intensity
of 10 mA© / kg. When the reversed NRM was decreased or broken
according to the acqusition of PRM and/or SRM at the blast, the
magnetic force at the surface may increase. That is, the induced
NRM change in the underground sequence is also resposible for the
observed irreversible change in the magnetic force. The further
study of the magnetoelectric effect at the artificial earthquake
is necessary to know the detrails.
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STUDY OF CRUSTAL STRUCTURE IN THE SOUTH BOSO PENINSULA
INFERRED FROM MAGNETIC ANOMALIES

1 1 1
Toshiya FUJIWARA , Sumio OGURA , Hajimu KINOSHITA
2
and Rie MORIJIRI

1.Chiba University, Yayoi-cho, Chiba 260
2.Geological Survey of Japan, Tsukuba, Ibaraki 305

We have been conducting land magnetic survey using proton
preccession magnetometer in the south Boso Peninsula from 1985 to
1989. In addition to these data, one track magnetic data was
acquired in the Tokyo Bay east side of Boso Peninsula by DELP
1987 «cruise (Isezaki et al.,1989). So we could construct a de-
tailed magnetic anomaly map in this area (Fig.l, Fig.2).

Data is reduced by IGRF 1985 model referring Kano-zan Geo-
detic Station, Geographical Institute (about 20km north of sur-
veyed area) to subtract Sq variations. Reduced data is refined by
applying upward continuation tecnique to a level of 1500ft(about
460m). H in Fig.3 mark means relative high anomaly and L mark is
low anomaly.

Magnetic basement map (Fig.5) is obtained by a two-layer
model inversion using pseudo-gravity and reduction to the ©pole
(Okuma et al.,1989) (Fig.4). Magnetization is assumed to be
uniform with magnetization intensity of 2 A/m and parallel to the
ambient geomagnetic field vector.

Map of Fig.5 is probably explained by steeply decline base-
ment from south to north and vertically magnetized bodies. Fig.5
shows that basement curves down to 2km deep and its horizodnital
N-S spread is about bkm. The basement seems to be shallower in
the northern part of surveyed area. This matter as mentioned
above is maybe more understandable rather fig.4 map than fig.5
map because Fig.5’s calculation mesh is still rough. Fig.5's map
is obtained basically by downward continuation of fig.4. Location
of steep <change of basement give a dense contour [ines. Low
magnetic anomalies is caused by declining of basement and high
magnetic anomaly reveals by vertically magnetized bodies.

Location of vertically magnetized bodies match to area of
outcrop of Mineoka Ophiolites belt. (They are marked by open
triangle in Fig.1l) Tectonic setting of the Mineoka Ophiolites
have been studied by several authors. Ogawa and Taniguchi (1987)
discussed emplacement process of these rocks associated with the
obduction of plate. Previous study of simulation which explains
gravity and magnetic anomaly in this area is given in a form of a
slab dipping toward south by Tonouchi (1981). Our present result
does not seem to support this idea positively.




Fig.l Schematic map of surveyed area.
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Fig.2 Surveyed area with data points.
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COMPUTER ALGEGRA FOR AUTOMATICALLY SOLVING
KINEMATIC DYNAMO PROBLEMS

Masaru KONO
Department of Applied Physics, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

1. Introduction

Since the classical paper of Bullard and Gellman (1954), a number of solutions was found
for kinematic dynamo problems in which velocity field was assumed to be composed of a small
number of toroidal and poloidal low-order spherical harmonics. They include T; and S combi-
nation of Bullard and Gellman (1954), T, $3¢ and S5° of Lilley (1970), T, and S, of Gubbins
(1973), $¥ and T% of Pekeris et al. (1973), and Ty, S,, $¥ and T3 of Kumar and Roberts
(1975). After the middle of the 1970’s, the focus of interest of dynamo theorists seems to have
shifted to turbulent dynamos and hydromagnetic or dynamic treatments, but the importance of
the Bullard-Gellman approach does not decrease even today. Kinematic dynamos are useful in
understanding the interaction between the velocity and magnetic fields. The expansion into
poloidal and toroidal modes is applicable to any solenoidal vector fields, and is useful not only
in kinematic problems but also in dynamic or hydromagnetic problems. Behaviors of kinematic
dynamos have not been satisfactorily explored yet, as shown by the small number of cases for
which existence of solutions was searched. Moreover, the Bullard-Gellman scheme can be
extended to solve the time dependent behavior of the dynamo, so that it can form a basis for
more general treatments. Therefore, it is very useful if this analysis is carried out for more
extensive combination of velocity fields.

The reason why the programming of dynamo problem was so difficult in the previous stu-
dies is that the the equations obtained from the induction equation using toroidal-poloidal expan-
sion (Bullard-Gellman type equations) are quite different depending on the velocity fields chosen.
If a new combination of velocity modes is considered, the program should be developed almost
from the scratch because the equations contain terms completely different from the ones for the
previous choice of velocity fields. It was the essential part of the previous studies of kinematic
dynamos to derive the correct equations for the particular velocity field. The program developed
in this study performs this procedure automatically, and the possibility of program error was thus
eliminated. The method of calculation is essentially that given by Bullard and Gellman (1954)
themselves, except that the present program handles general functional form rather than numbers
appropriate for each specific case.

With this approach, kinematic dynamo problems can be handled with the same program and
with the same procedures for different combinations of velocity harmonics. The velocity field
for a kinematic dynamo problem can be characterized by the modes such as T} and Szf, and the
shape of the radial function each mode takes. For the present program, the only parameters
needed besides the ones specifying the velocity field are the field we are interested in (usually
the dipole term, S;), the maximum degree to which the magnetic field is expanded, and the
number of division of radial distance when the differential equations are approximated by the
difference form. No change is necessary when different velocity harmonics are employed, or
when the calculation is carried out to a different degree or using a different division number.

2. Method of Analysis

The procedure developed below follows very closely the scheme given by Bullard and Gell-
man (1954). We shall only briefly outline the mathematical treatment as is necessary for
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understanding the computer program developed later. The normalized form of the induction
equation

§§I:—=Rmcur1(va)+V2B (1)
describes the behavior of the magnetic field B in the presence of a velocity field v. In this equa-
tion, R, is the magnetic Reynolds number characterizing the relative importance of the induction
term (curl(vxB)) against the diffusion term (V2B). Since both the magnetic field and the velo-
city field satisfies the divergence-free condition, they can be expressed as sums of toroidal and
poloidal vectors, which can then be expanded using spherical harmonics (cf., Chandrasekhar,
1961). For example, the magnetic field can be expressed as

B3, (TpSp)=X curl{ Tp(r)¥p(0,0) - heurPSp(n¥(8,0)-) 2)
B B

where (r, ©, ¢) are spherical coordinates, TB and SB are the toroidal and poloidal vectors of
degree [ and order m, and Tg(r) and SB(r) are their defining scalar functions. (Following Bullard
and Gellman (1954), Greek letters such as B represents, collectively, degree /, order m, and either
sin or cos of ¢-dependence of a spherical harmonic function if it appears as a suffix, and simply
the degree [ if used by itself.) Yp(0,¢) are spherical harmonic functions of unnormalized form.
Because of the solenoidal nature, the velocity field can also be expanded similar to (2). In this
paper, the suffix o is exclusively used to specify the velocity field, to make the distinction from
magnetic field harmonics, which are represented by either B or y. A notation U, Up, etc. will
be employed if either toroidal or poloidal fields is implied. Inserting the toroidal-poloidal expan-
sion into the induction equation (1), and then we integrate the equation over the surface of a
sphere of radius r after multiplying by a toroidal (poloidal) function T’y (S’y) which has the same
shape as (2) except that the radial function is unity for every value of . Because of the ortho-
gonality of toroidal and poloidal fields of different degree and order, the results are simplified as

aT, ,0°T,

rz—a;--—rz — +y('y+1)TY=—RM§§[(TaT5TY)+(TaSBTY)+(SaTBTY)+(SaSBTY)] (3)
3s, 9%,
#—B;—rZ—ar—z—wm1)Sf—Rm§%;[(TaSBSY)+(SaTBSY)Jr(SaSBSY)] )

In these equations, (UyUpUy) on the right hand side are the interaction terms representing gen-
eration of the magnetic field U, by the action of the velocity U, on the magnetic field Up.

K
(UaUpTy=—5" [[Uy curl(UaxUp)sindd6do )
v

where K, is * or S/y(y+1), when U, is T or S/, respectively, and N, is the normalizing factore
for the spherical harmonic. Equations (3) and (4) determine the behavior of the various modes
T, and S,.

Two different approaches are possible for solving these equations. One is to seek for a
steady state solution by eliminating the time derivatives and form an eigenvalue problem for R,
which was the method employed by Bullard and Gellman (1954). Another is to assume a solu-
tion which depends on time as ¢”’. In this case, 9/0¢ in (3) and (4) is replaced by p, and we
obtain an eigenvalue problem for p, with R,, appearing as a parameter,

3. Programming




The following shows how to implement the above procedure in a computer program. For
the programming language, C was used in the first half of the program where algebraic analysis
of the induction equation is carried out, and Fortran was employed in the latter half of the pro-
gram where actual numerical calculations are carried out. This choice was made because C is
well suited to carry out logical operations using character variables, while numerical calculations
can best be done using Fortran subroutines in mathematical libraries available at most computer
centers.

Identification of the Interaction Chain

The first task in the expansion of induction equation is to find which magnetic field is
induced by the given velocity field. As the interaction terms (UyUpU,) depend either on Gaunt
integrals Kyp, (when the number of the toroidal terms in U is 0 or 2) or on Elsasser integrals
Lypy (when it is 1 or 3), the search can be implemented by using the selection rules of the Gaunt
and Elsasser integrals.

Programming selection rules is quite simple. We start by choosing for the trial function a
harmonic Up which we are interested in (Sy, for example). All the harmonics U, with degrees
less than or equal to the preassigned maximum degree are tried to see if it can be induced by the
combination of the velocity U, and magnetic field Up. If (U,UgU,) satisfies the selection rules
and if Uy, was not used as trial function before, we place the particular U, in the waiting list.
After the search for one Uﬁ is over, the next one is taken from the waiting list, and the search
continues in the same manner, until the waiting list is exhausted.

There are rare cases in which the Gaunt or Elsasser integral vanishes for a combination of
harmonics satisfying the selection rules. However, as we need the values of these integrals in
any case for constructing the differential equations, appearance of such zeros for the integrals
does not cause any trouble. The Gaunt or Elsasser integral is evaluated when the selection rules
are satisfied, and the term is discarded if the particular integral vanishes.

The Gaunt and Elsasser Integrals
As mentioned earlier, we need the values of the Gaunt and Elsasser integrals appearing in
the interaction terms (UaUgUy). For both integrals, the integration by ¢ between 0 and 2x gives
7t/2 times the number of occurrence of zero in the expressions itjtk.
The Gaunt integral can be evaluated by the the method presented by Gaunt (1929). The
part in Kg, related only to 8 (G1%y can be written as
1

[ PlGPL PO 2=1)" kA ()N (2s=2n) 15! o (=1 (Hi+8) ! mtn—i=)!
1

(m=DIs—Ds-m)!(s—m)!2s+1)! T (I=i—0) (m—n+i+0)! (n—k—1)!1!

(6)

where 2s=l+m+n, and the summation by ¢ spans integers for which all the factors of factorials
are nonnegative. By applying the recurrence formula of Legendre function, we can show that

the integral Eijk (the part of Elsasser integral related only to ©) can be represented by the use of

Giik integrals.
o1 . - . 1 — .

E! {,,’f,:—é—(mﬂ) [(m+J—1)G; PR ()Gl % ,,]——z-(n+k) [(n+k—1)G;{;;1 kl(m-pG! {,{‘,,,1] )
Thus the calculation of integrals is reduced to simple summation of terms by (6) or (7). One
thing which needs special care in the calculation of the Gaunt and Elsasser integrals is that the
numerators and denominators in (6) tend to be quite large and the signs of terms alternate.
Thus, if ordinary method is employed in this calculation, error may become unexpectedly large
due to the loss of significant digits. The values of GiJ% and E}fm',‘, are always rational numbers
as shown by (6) and (7). Using this property, each term of (6) are expressed as products of
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prime numbers in the present program. This procedure is somewhat cumbersome, but by this
method the calculations can be carried out in an error-free way.

‘The values of these integrals were sometimes given in a tabular form, but since its calcula-
tion is straightforward as shown above, it is much easier to calculate them when they are needed
in the program than to use tabulated numbers.

Evaluatzon of Interaction Terms

The next step is the formation of the differential equations governing the behaviors of indi-
vidual harmonics. The interaction terms (UoUgUy) in (3) and (4) can be represented by the
Gaunt or Elsasser integrals, o, B, ¥, and a normalization factor. The expressions are fairly easy
and are given by Bullard and Gellman (1954).

The only point we should take care is that the velocity and magnetic field functions in the
interaction terms are not necessarily of the form of Uy or Up, but also their first and second r-
derivatives and those divided by . We have to treat these functions symbolically rather than
numerically to keep the generality of the scheme. In the present program, the coefficients of
interaction terms are stored separately for each combination of one of U,, Ug/r, oU,/or,
dU¢/ror, 0*Uy/or* and one of Ug, dUy/0r, 0*Up/or*.

The results of this evaluation are machme readable form of the expanded equation (3) and
(4), with correct coefficients for each interaction term. Therefore, this output can be displayed in
such a way as is understandable to human thinking.

Reduction of Differential Equation into Difference Form

Since we are studying only the kinematic problem, any forms of the velocity function
needed in calculation of (3) or (4) (0U,/dr, etc.) can be evaluated exactly, as the velocity radial
function Uy is given. The differential form of the magnetic field, on the other hand, should be
replaced by approximate difference forms. If the range from r = 0 to 1 is divided into ‘M equal
parts, and if the value of particular function Up at the kth grid point is written as U, the equa-
tions (3) and (4) can be written at each grid point by applying the following replacements;
Up=Up 4» BUB/ar=M8', and 82UB/ar2=M28", where 8" and & are the first and second central
differences of Ug at point rp = k/M. In the computer program, the easiest way to realize this
procedure is to prepare a blank square matrix of necessary dimensions, and to add submatrices
formed for the interaction term (U,UpU,) (appropriately weighted by the factors obtained earlier)
in which differential terms are replaced by the above forms.

Boundary Conditions

The boundary conditions satisfied by the magnetic field harmonics are that they are not
singular at the origin, that the poloidal field connects smoothly with the field outside the core
which can be derived from a scalar potential, and that the toroidal field is completely contained
in the core. Therefore,

Sp=Tp=0(¢P*1) at r=0, aSp/or+BSe=Tp=0 at r=1 8)

For a toroidal component, the radial function T B(r) vanishes at both » = 0 and 1, so that values at
only (M-1) points need to be determined. For a poloidal component, the value at r = 0 also
vanishes but the value at » = 1 should be determined by the boundary condition (8). The expres-
sions of derivatives (20) at =1 gives a relation between SB M-1> Sp.Ms Spym+1, Which are values of
Sg at r = 1 and its neighboring points. The latter (Sp,p+1) 18 of course fictitious point outside of
the sphere, but through the boundary condition (8), it can be replaced by Sp 31 and Sg .

Formation of the Matrix Equation and Diagonalization
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The matrix formed from the right hand side of the equations (3) and (4) are composed of
submatrices of MxMp, where M, and My are either M or M—1 depending on the boundary con-
ditions satisfied by U, and Up. These submatrices are placed in the big matrix containing all the
equations (3) and (4). The second and third terms on the left hand side of (3) and (4), represent-
ing the diffusion of the magnetic field, can also be formulated by the same method and the boun-
dary conditions can be applied as shown above. The diffusion term thus forms a tri-diagonal
matrix., The time derivatives in (3) and (4) on the other hand, form a diagonal matrix, which is
composed of simply the values of 2 (or (k/M)z, numerically). A matrix equation is derived by
these replacements.

Solving the Eigenvalue Problem

The eigenvalues R, or p and the eigenvector of the matrix obtained above can be solved by
using standard library routines. In the present case, Fortran subroutines in MATH/LIBRARY of
IMSL (IMSL, 1987) were used in the computation. In the stationary solution, the smallest real
eigenvalue is the one we are seeking. On the other hand, time-dependent case is solved by tak-
ing R,, as a parameter. The real part of p usually increases as the magnetic Reynolds number is
increased. The value of R,, at which the real part of p changes from negative to positive indi-
cates the onset of instability. If the imaginary part of p is zero, the solution coincides with the
steady state solution. If the imaginary part is not zero, the instability takes the form of oscilla-
tion with increasing amplitude.

4. Application to the Bullard-Gellman Velocity Field

The programs were developed on Sun-3 and Sun-4 Workstations, and transferred to ETA-10
super computer, both of which run on Unix operating system. The program was first applied to
the case of T; and S3° combination which was repeatedly studied since Bullard and Gellman
(1954). That this program works correctly is shown by the fact that correct expansion for
Bullard-Gellman velocities are obtained for degrees 2, 3, 4 (Bullard and Gellman, 1954), and 5
(Gibson and Roberts, 1969; with correction in Pekeris et al., 1973). It was also confirmed for
the least positive eigenvalues that the same values can be obtained by both stationary and time-
dependent formulations. :

Table 1 lists the smallest eigenvalues obtained by various authors for different combinations
of the degree of harmonics and division in radius. Apparently, large difference in eigenvalues is
noticed in a number of cases with the same truncation level and division number., However, on
closer look, it appears that the values reported by Gibson and Roberts (1969) are in most cases
very different from the values reported by others. The present results are in good agreement
with the data of Bullard and Gellman (1954) and of Lilley (1970). The difference between the
eigenvalues of these three authors never exceeds 0.5 %. The eigenvalues of Pekeris et al. (1973)
are reported to have been obtained by "finite differences, with an interval % of 0.01 orless". The
coincidence between the present eigenvalues and the ones given by Pekeris et al. (1973) is also
satisfactory. We can conclude from these comparisons that the present program works satisfac-
torily for a wide range of trancation levels (L) and division in radius (). Among the earlier
results reported for the Bullard-Gellman velocity field, the ones by Gibson and Roberts (1969)
are apparently in error.

Figure 1 shows the change of the real part of the eigenvalue p with the change of magnetic
Reynolds number. In the present study, satisfactory coincidence was observed in all the cases
between the stationary and time-dependent solutions,

5. Conclusions
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Table 1. Eigenvalues for Bullard-Gellman velocity Ty=S-2(1-r), S§‘=r3(1_,-)2

Degree  No. of Eqs.  Author(s) Division in r
10 16 20 50 100

BGS4
GR69 66.46

2 4 L70 58.6 64.4
PAS73 66.460
K89 58.38 63.22 64.38 66.13 66.38
BGS54 68.8
GR69 83.43 83.09

3 7 L70 67.6 78.5
PAST3 83.207
K89 68.78 76.60 78.78 82.35 82.90
GR69 76.02 75.95

4 12 L70 94.3!
PAST3 95.834
K89 168.90 94.05 94.57 95.60 95.76
GRé69 143.2

5 17 PAS73 1369.2
K89 45922 305.08 14149 1496.8 °  1434.7

Notes: BG54, Bullard and Gellman (1954); GR69, Gibson and Roberts (1969); L70, Lilley
(1970); PAST3, Pekeris et al. (1973); K89, present study.
! Number of division was 17.

Computer programs were developed to treat the induction equation in a general way based
on the principle of computer algebra. Expansion of the induction equation leads to many terms
with coefficients which should be determined one by one. In such a situation, evaluation of the
equation is very time-consuming and prone to error if interaction terms are evaluated in a con-
ventional manner. Present programs avoid this by manipulating the functional forms of various
velocity and magnetic field harmonics rather than the values of these functions. Because of
mathematically simple structure of poloidal-toroidal expansion and because of the fact that the
coefficients are always rational numbers, error-free expansion of equatlons is possible by the
method of computer algebra.

Once the equation is correctly expanded, the rest of the program can form the matrix for
eigenvalue problem in a straightforward way. Formulation into difference equations, taking care
of boundary conditions, and diagonalization needed for making a standard eigenvalue problem
can be carried out without much trouble. Computation was also carried out for the case of
Bullard-Gellman velocities and the obtained eigenvalues were compared with the values reported
by other authors. The eigenvalues obtained by the present program are in good agreement with
the values reported by Bullard and Gellman (1954) and Lilley (1970). Satisfactory agreement
was also observed between the present eigenvalues and those of Pekeris et al. (1973), although
the details of computation are not known for the latter. On the other hand, data in Gibson and
Roberts (1969) are quite different from the present results. It can be concluded that their eigen-
values are in error, because the present results are corroborated by comparison with values
~ obtained by different workers and different programs.

The merit of present approach lies in the fact that the equations for given velocity harmon-
ics can be obtained to any degree without errors. Application of this program to other
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combination of velocities is now in progress and will be reported elsewhere.

The present approach can also be expanded for the hydromagnetic dynamo with inclusion of
Navier-Stokes equation. To do so, the velocity field must also be expanded into a sum of func-
tions Uy, and the equation for the fluid motion can be solved for the unknown values of U, in
the similar way as the Bullard-Gellman formulation (Frazer, 1973). In this approach, we cannot
restrict the interaction diagram to a small number of velocity harmonics. If the induction equa-
tion is coupled with Navier-Stokes equation, the resulting equations will be quite difficult and
conventional approaches will fail just because of their complexity. If Bullard-Gellman expansion
is extended to such cases, only algebraic treatment of equations by computer can handle the
problem. Otherwise, some different approaches (such as spectral method) are needed to formu-
late ever increasing complexities. Further, it is planned to incorporate the equation of fluid
motion in a way as suggested by Frazer (1973). Such extension of the present program will be
useful in studying the behaviors of kinematic and hydromagnetic dynamos.
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OPAQUE MINERALS IN HYDROTHERMAL ALTERATION ZONES
AND THEIR RELEVANCE TO ROCK MAGNETISM.

Hirotomo UENO

Department of Geology, College of Liberal Arts,
Kagoshima University, Kagoshima 890 ‘

Introduction

It is important to discriminate TRM and CRM, neverthe-
less it is not easy by usual paleomagneical treatments. The
simplest identification with the CRM may be that the remanence is
due to ferromagnetic minerals which are crystallized newly or
recrystallized from the same minerals during alteration or meta-
morphism. In this paper opague minerals, which are inclusive of
both primary rock-forming Fe-Ti oxide minerals in igneous rocks,
secondary Fe-Ti oxide minerals and new sulfide minerals changed
from Fe-Ti oxide minerals, are examined in hydrothermal altera-
tion zones around ore deposits, and remanences characterized by
these ore minerals are dealt with.

Continuous sections from fresh to altered within the
same igneous rock body are selected for this study.

Volcanic Sulfur Deposits

The opaque minerals in fresh rocks of two pyroxene
andesite lava around the Numajiri volcanic sulfur deposits (38 °
38'N,140 ° 15'E) consists of primary magnetite with accessory
ilmenite. Advancing alteration, magnetite changes partly to
maghemite. In this step the alteration of silicate minerals is
slight decomposition of plagioclase and pyroxene. As kaolinite,
montmorillonite and jarosite are detected in more altered sites,
fine grained Ti rich hematite is formed from maghemite and magne-
tite. Opague minerals in highly altered sites consist mainly of
Ti poor hematite with accessory with pseudobrookite, and alunite
is found in these sites. Finally those opaque minerals change to
marcasite (Fig. 1).

The median destructive fields by alternating field
demagnetization of samples from fresh and altered sites are 10 to
20 mT and 50 to over 60 mT, respectively. The CRMs due to hema-
tite in altered sites are harder than the TRMs in fresh sites
(Ueno and Nedachi, 1985).

The similar occurrences of Fe-Ti oxide minerals in the
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Green Tuff alteration zone at the western Gunma and in the geo-
thermal alteration zone at Noya have reported by Sato (1984) and
Fujimoto (1987), respectively. But, they have not mentioned
sulfide minerals. Therefore, results described here can be
applied to the region of Green Tuff alteration and geothermal
alteration.

Kuroko Deposits

Generally almost rocks around the Kuroko deposits are
altered, but the Torigoe dacite lava around the Kosaka Kuroko
deposits (40 °19'N,140 © 46') and the Hatabira dacite of the Tsu-
chihata Kuroko deposits (39 ° 17'N,140 ° 50'E) have fresh parts.

VOLCANIC SULFUR DEPOSITS ( Numajiri Mine )

Ti poor Mt Ti poor Hm .
Ti rich Mt — > —_— > Marcasite

Ti rich Hm J\ Pb

Mh

KUROKO DEPOSITS ( Kosaka & Tsuchihata Mines )

Mt —> Hm > Pyrite

I , M

SKARN DEPOSITS ( Chichibu Mine )

Mt Mt N Pyrite

l 4 2

Fig. 1. Opaque minerals in hydrothermal alteration zones.
Mt; magnetite, Mh; maghemite, Hm; hematite, .
Pb; pseudobrookite
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The Torigoe dacite lava whose thickness in 68 m underlies the
Kosaka Kuroko deposits. The bottom and upper one third parts are
altered with pale gray or greenish white in color, but the cen-
“tral one third part is fresh with brownish gray in color. The
fresh part have relatively fine grained magnetite which is euhe-
dral or subhedral. 'The most fresh rock include no clay mineral.
The altered parts have hematite of needle shape. In this part
chlorite and sericite are detected., Finally hematite changes to
pyrite. The Hatabira rhyolite dome of the Tsuchihata Kuroko
deposits is host rock of the network copper veins which are
believed to the Keiko-type ores of the Kuroko deposits. The most
fresh rock among collected samples is 300m of the ore body at the
near the entrance adit of Level 0, and the rocks become more
altered as the distance to the ore body decrease. Even if the
most fresh part with brownish gray in color primary magnetite
changes partly to hematite along the rim of the grain. As chlor-
ite and sericite increase, hematite replaces almost magnetite.
Two perlite zones resulted from rapid cooling of original rock
appear in the altered zone. Although clay mineral is mordenite
instead of chlorite and sericite in the perlite zone, hematite
appears as a continuously changing phase of opaque minerals.
Finally hematite changes to pyrite (Fig.1).

Samples from fresh and altered parts have normal and
reversed polarity magnetizations, respectively (Ueno, 1982). The
median destructive fields of samples from fresh parts are about
10 mT, and those from altered parts are over 60 mT.

Pyrometasomatic Deposits

The Chichibu pyrometasomatic deposits (36 ° 01'N,138°
49'E) have genetical relation to quartz diorite. The quartz
diorite bodies have undergone the different grade of hydrothermal
alteration. The fresh parts of the quartz diorite bodies have
euhedral or subhedral magnetite of 150 microns or less in size.
As the alteration increases in grade, magnetite ought to be
recrystallized as the aggregate of small magnetite of 10 microns
in each grain size. The recrystallized magnetite contains less
V5,053, Al,03 and TiO, (Ueno, 1986). The Curie temperatures are
560°C on fresh rock and 580°C on altered rocks. The chemical
composition of magnetite is exactly concordant with the Curie
temperature, and it seems that recrystallized magnetite become
more pure magnetite. Finally those change to pyrite (Fig. 1).

The median destructive fields of samples from fresh
sites are 15 to 45 mT. The magnetizations due to recrystallized
magnetite have the median destructive fields of 60 or over 60 mT
(Ueno, 1987).
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The ore deposits described above are of Miocene to
Holocene in age. The older deposits may be examined by the same
procedure, but the mineral changes in the later stages must be
considered. There found no typical igneous body including fresh
and altered parts around vein type ore deposits because of over-
lapping of so called propylitization.

Summary

Opagque minerals in the hydrothermal alteration zone
around ore deposits change according to the grade of the altera-
tion. And the changing style of opaque minerals are different in
each type ore deposit. That means the opaque minerals are re-
flecting upon the conditions during alteration. It is clear from
the results that volcanic sulfur deposits and Kuroko deposits are
higher oxidation state than pyrometasomatic deposits.

As mentioned above it is sure that median destructive
fields of the CRM acquired during hydrothermal alteration is
high as compared with the original TRM.
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THERMAL VARIATION OF INITIAL SUSCEPTIBILITY BY USING
AUTOMATIC HIGH-TEMPERATURE SUSCEPTIBILITY METER
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Thermal demagnetization is a very powerful technique to remove secondary
overprintings of remanence either of low-blocking or high-blocking temperature
components. However some of the minerals in the rock samples turn magnetically or
chemically unstable during thermal cleaning to a few hundred degrees in Celsius.
Thermal instability of the magnetic minerals often degrades usefulness of thermal
demagnetization and shows a confusing pattern on the vector diagram (Fig. 1).
Titanomaghemite, pyrrhotite, and goethite are typical minerals of thermally unstable
nature. Main difficulty may come from the fact that those minerals convert to magnetite
during the heating experiment. Newly formed magnetite can easily override the primary
remanence due to its very large magnetization. Growth of magnetite during the artificial
heating is generally prominent for the case of unconsolidated sediments because of the
presence of reducing agent, dehydration, and less abundance of primary stable magnetic
minerals. ’

Thermal demagnetization is a very time-consuming procedure and destructive
experiment. By these reasons it is practically important to know prior to thermal
demagnetization whether the samples can survive the thermal treatment or not. It is also
helpful to know the maximum temperatures to be allowed for each particular sample.
There are numerous, well-established laboratory techniques for indicating thermal
variation of magnetic property during the heating. Thermally sensitive parameters are as
follows: Curie temperature, coercivity spectrum of isothermal or anhysteretic remanence,
remanent coercivity, rotational hysteresis, initial susceptibility, and so on (e.g., Lowrie and
Heller, 1982; Collinson, 1983). The initial susceptibility is one of such parameters and has
some advantages for practical use. Firstly the initial susceptibility is sensitive to the
portion of finer magnetic particles which may carry stable part of remanence. Secondly
measuring thermal change of the initial susceptibility is simple and less time-consuming
particularly by using an automatic high- temperature susceptibility meter system.

We employed Bartington M.S.2.W/F system which is a very common commercially
developed high-temperature susceptibility meter. It has very sensitive sensor which enable
us to measure less magnetic samples such as sediments; the noise level is about 1X10-8 in SI
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Fig. 1 (left) Unsuccessful thermal demagnetization at the higher temperatures (above
300°C). Sample is a marine siltstone from the Boso peninsula (Pleistocene).

Fig. 2 (right) Initial susceptibility measured after each step of progressive thermal
demagnetization for six samples from the Boso peninsula. Initial susceptibility increases
above 350°C.

unit. For high-temperature measurement, sample should be prepared as a cylindrical
shape of 15 mm in diameter and 25 mm highs. A furnace controller unit is equipped with a
RS232C port through which we can transfer read out of susceptibility and temperature.
However we could not control susceptibility meter through the RS interface such as to stop
heating or to preset maximum temperatures. This one-way communication system forced
us to keep watching the thermometer during heating process and to switch the power
controller towards cooling at the turning temperatures. We therefore made some
improvement to the electric circuit to enable automatic switching of the furnace through
RS interface. The adhon circuit is, in practice, very simple one and we do not think
necessary to show the circuit diagram in this report. The interfacing program is coded with
Turbo Pascal (ver. 5.0), and the diagrams are illustrated by using Microsoft Chart (ver. 3.1).

Thermal change of the initial susceptibility can be observed through measurement
of the susceptibility after every steps of progressive thermal demagnetization as shown in
Fig. 2. The figure is a case of Pleistocene marine sediment form the Boso peninsula. We
can find pronounced increase in susceptibility by heating samples above 350°C. We can,
however, know the change only after thermal demagnetization.

Continuous change in the initial susceptibility is observed during heating by using
the automatic high-temperature susceptibility meter (Fig. 3). Heating and cooling rate is
controlled as 10°C/min. Sudden increase in susceptibility appears at 350°C and 500°C on
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Fig. 3 Variation of initial susceptibility during continuous heating up to 350°C. Heating
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heating process. Increase in susceptibility is much enhanced on the cooling curve. This
sample clearly showed irreversible change of the initial susceptibility at high-temperatures
(above 350°C).

Thermal change in susceptibility is more clearly observed with stepwise, continuous
heating experiments; to heat up sample to a certain temperature and to cool down to the
room temperature, and then to repeat heating/cooling cycles at the higher temperatures
(Fig. 4). This progressive experiment is more similar to the actual condition of thermal
demagnetization experiment. We can point out the temperatures above which the
susceptibility makes irreversible change by heating, ‘

Our tentative conclusion is that we cannot safely carry forward thermal
demagnetization above the irreversible point indicated by the continuous high-temperature
susceptibility measurement. The high-temperature susceptibility measurement can serve
as a time-saving technique in terms of a reconnaissance of thermal demagnetization.

Reference:
Lowrie, W. and F. Heller (1982) Rev. Geophys. Space Phys., 20, 171.

Collinson, D.W. (1983) Method in Rock Magnetism and Paleomagnetism, (Chapman and
Hall, London), 503.
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AN AUTOMATIC SPINNER MAGNETOMETER
WITH THERMAL DEMAGNETIZATION EQUIPMENT
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1. Introduction

Spinner magnetometer is a very useful instrument and widely used in rock magnetism and
paleomagnetism. Some of the important steps in its development were the introduction of
fluxgate magnetometer with phase sensitive circuit by Foster (1966) and that of the ring-core
sensor by Molyneux (1971). In paleomagnetic measurements, it is necessary to replace the sam-
ple several times to obtain three components of the magnetization vector. Moreover, measure-
ment of magnetization cannot be considered complete without appropriate magnetic cleaning
such as alternating field (AF) or thermal demagnetization. Because the measurement of
remanence and demagnetization is very time-consuming, several attempts have been made to
automatize either the measurement itself (e.g., Kono et al,, 1981), or the entire process of meas-
urement and demagnetization (e.g., Noel and Molyneux, 1975; Niitsuma and Koyama, 1989).

Kono et al. (1981) constructed a spinner magnetometer in which the sample is rotated
around two axes simultaneously, and the signal from a single ring-core fluxgate sensor supplies
sufficient information about the magnetization of a sample. This was made possible because the
vertical component of the magnetic field measured on the surface of a sphere completely deter-
mines the potential field outside, as they satisfy the classical Dirichlet condition. Sample
replacements were made unnecessary by the rotation of the sample around the two orthogonal
axes (vertical and horizontal) by the use of bevel gears. For further automation, this instrument
may be combined with alternating field (AF) demagnetization. But it is practically impossible to
combine this with thermal demagnetization because of the mechanical complexity.

As sophisticated demagnetization techniques became needed to characterize different com-
ponents of magnetization, thermal demagnetization seems to have gained importance compared
with AF demagnetization, as the latter is often useless for rocks containing very high coercivity
components such as hematite. To include thermal demagnetization in an automatic system, it is
necessary to make the mechanical parts as simple as possible to avoid damages caused by the
heating, or the sample and the moving mechanism should be well separated so that heating does
not affect the mechanical components.

We have designed an automated system in which a sample is rotated and translated and the
signal is measured by a fluxgate sensor. In contrast to the scheme of Kono et al. (1981), the
present magnetometer measures the field over the surface of a cylinder surrounding the sample.
In principle, this method gives the complete description of the potential field by a source within
a cylinder only when the vertical component is measured over the infinite stretch of the cylinder.
In practice, however, the magnetic moment of a sample can be determined to a satisfactory level
by measureing the field over a short distance in the axial direction even when it contains a con-
siderable amount of multipole fields, e.g., quadrupole and octapole terms. We incorporated ther-
mal demagnetization as a part of automatic operation, with an electric furnace placed in a three-

! Now at Sony Corporation, Kita-Shinagawa 6-7, Shinagawa-ku, Tokyo 141.
2 Now at Kawasaki Steel Corporation, Uchisaiwai-cho 2-2, Chiyoda-ku, Tokyo 100.
3 Now at Yamatake-Honeywell Electric Corporation, Shibuya 2-12, Shibuya-ky, Tokyo 150.
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layer permalloy shield well separated from the sensor. We shall describe below the method of
determination of remanence direction and intensity, and also give brief descriptions of the elec-
tric circuit and mechanical setup, and some examples obtained by this instrument.

2. Determination of Magnetic Remanence

The magnetic potential of a sample can be expressed by expansion into spherical harmonics

o 7
W=cY, 3 ()" Pricos)(alcosmp+bsinme) (1)

n=1m=0
where ¢ is some length scale included to make the dimension of a and b} that of the field,
(,8,0) are spherical coordinates with the origin placed at the center of the sample and the polar
axis taken along the sample rotation axis, Pj'(cos®) are associated Legendre functions, and o
and by} are the Gauss coefficients describing the magnetic moment of the sample. In our case, it
is more convenient to use the cylindrical coordinated (s,z,¢). The three components of the mag-
netic field at the surface of a cylinder of radius ¢ can be obtained by partial differentiation of the
potential W by these coordinates.

B s=ZZsin"+16 [(n+1)P7(cosB)—(n~m+1)cosOP, { (cosO)](alicosmd+blsinmd) Q)
B,=Y" ¥ (n—m+1)sin"™"20P™. ; (cosB)(aTcosm+bTsinmed) @)
nm
By=Y 3 msin™10P(cos0)(aysinmo-bTcosmd) )
nm

Obviously, axially symmetric terms in the potential (m=0) does not contribute to the field
component B¢, so that we cannot obtain any information about them from the measurement of
the ¢-component of the magnetic field. On the other hand, it is possible to determine the poten-
tial either from z-component or s-component or from both. If the sample is rotated at a fixed
value of z, a non-axisymmetric term (m#0) produces a signal! which is sinusoidal with periods
equal to the time for one revolution divided by m. Distinction between terms with different m
can therefore be made easily by frequency sensitive analysis such as the fast Fourier transform
(FFT). The distinction between the terms with different n can only be made possible through the
analysis of the z-dependence of the magnetic field. Unfortunately, the signals corresponding to
different n are not orthogonal to each other in contrast to the case of the sampling over the sur-
face of a sphere (Kono et al., 1981). Therefore, the Gauss coefficients & and b will change if
the level of truncation in n is changed. It should be noted, however, that the components of the
magnetic field are either even or odd function of z. Since even and odd functions are orthognal
to each other if the interval of measurement is taken to be symmetric about z=0, the presence of
the quadrupole term (n=2) does not hinder the precise determination of the dipole term (n=1).
The source of largest error in the determination of the dipole term is obviously the octupole term
which has similar dependence on z as the dipole term. We found out that the magnetization of
the sample can be determined satisfactorily from the measurement of the magnetic field by the
fluxgate sensor when the sample is rotated around and translated along an axis at the same time.

3. The Spinner Magnetometer
Figure 1 shows a schematic drawing of the magnetometer-furnace system. The rotation and
translation of the sample are carried out by two stepping motors mounted about 50 cm away

from the sample. - The stepping motors are actuated by the pulses sent from the computer.
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Fig. 1. Schematic diagram of the spinner magnetometer-electric furnace system developed in this
study. .

Counterclockwise or clockwise rotation of 0.2-3 revs/s, or translation to the left or to the right
with a speed of 0.4-5 cmy/s, or their combination can be attained through the computer control.
A fluxgate sensor of ring-core type is located in the middle of the non-magnetic field inside the
three-layer shield. The sensor measures the s-component of the magnetic field in the present
setup.

In the measurements, the axisymmetric components of the magnetization (aﬁ) is harder to
obtain than the other components because it induces only DC magnetic field and because the
magnetometer shows a non-negligible amount of drift. Non-axisymmetric terms give frequency
dependent signals and therefore can well be determined. The axisymmetric terms can only be
determined from the variation with z. It is necessary to repeat more translation than rotation in
order to effectively reduce the noise due to the drift.

Figure 2 shows the wave forms of the axisymmetric component for various stacking
numbers when a sample was measured by this magnetometer. This component contains the larg-
est noise as indicated above. Obviously the stacking is quite effective in reducing the measure-
ment noise. The RMS noise is reduced as the inverse square root of the stack number, as it
should if the noise is random. In practice, too large stack numbers are not practical as the sam-
pling time becomes too long. Stack numbers less than about 40 is used in actual measurement.

4, Furnace Control

An electric furnace with noninductive winding is placed further away in the shield case,
well. separated from the fluxgate sensor in order to avoid the heating of the latter. The block
diagram of the furnace control circuit is shown in Figure 3. The current to the furnace is con-
trolled through a zero-cross solid-state-relay (SSR). The temperature is monitored by a Pt-
Pt13%Rh thermocouple of which voltage is read into the computer through 12-bit AD converter.
After the necessary: linearization, the temperature shown by the thermocouple is compared with
the target temperature. .

The computer calculates the necessary output power in terms of proportional action (P),
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Fig. 2. The axisymmetric component of magnetization measured with various stacking numbers.
Note the change in the zero level, which reflects the long-term drift of the DC level of the mag-
netometer.

integral action (I), and derivative action (D). The output power to the furnace is thus the sum of
PID actions. The combination of these three actions improves the performance of the furnace
well if the parameters are suitably chosen. In the actual program, we use a formula written in
the discrete form

P, =k)[E, e ZE +T4(E,~E,_1)/dt] (5)
1 Fm

where P, and E, are the output and the deviation at the nth step, respectively, and Oz is the inter-
val between the steps. The numerical parameters in the above equation (k,, T;, Tq4) were deter-
mined empirically, so as to optimize the performance. This power is applied to the furnace by
switching on the mains supply for certain numbers of half cycles in total of 128 cycles of the
mains supply and switching off for the rest of period. It was shown that the highest temperature
is quite close to the set temperature at every step, and also that the paired heatings show the
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temperature changes almost identical with each other. This reproducibility is the most important
characteristics requied of a furnace used in paleointensity experiments (Thellier and Tehllier,
1959). :

5. Discussion and Conclusions

An automatic magnetometer-furnace system was built which can operate a series of thermal
demagnetization or magnetization experiments with the computer control. It was shown that,
with the combination of rotation and translation of a sample along an axis, it is possible to deter-
mine the vector magnetization to a satisfactory level. By this approach, the need to change the
sample orientation in measurements was eliminated, and therefore the possibility arise to measure
and demagnetize the sample without removing it from the sample holder.

As the needed movements (rotation and translation) are quite simple, the actuators for the
movements (stepping motors) and sensors to measure the position (photo-interrupters) can be
placed well separated from the sample. This has a merit in reducing the noise caused by these
elements, as well as in permitting to construct the sample holder and the shaft with a heat resis-
tant material such as ceramics. Thus, the sample can be translated to the inside of the furnace

12bit
A/D / Constant
Amp. DC
converter

Thermocouple

AC 100V .
SSR SSR
Heater
D > 100 Bz
ata
latch —————3Comperator &—————] 8 bit Clock
ist
- Counter Oscilator
St Solenoid coil
(NECVPC%U]) Counter Statns
SSR

Fig. 3. Block diagram of the electronic circuit controling the temperature of the furnace, applied
magnetic field, and electric fan for cooling the sample and the furnace.
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and heated to high temperatures, enabling the combination of heat treatment and measurement to
be carried out successively.

We used this system for paleointensity experiments and found some improvements over the
ones done by using conventional instruments. First of all, because the sample is never removed
from the sample holder during the course of an experiment, sample orientation errors are practi-
cally eliminated. Secondly, the sample stays inside the three-layer magnetic shield all the time,
so that the effect of unwanted magnetic field is small compared with the ordinary experiments.
This apparatus may also be useful for thermal demagnetization of viscous samples which acquire
large remanences in the laboratory. Thirdly, it is possible to perform demagnetization in a good
vacuum to avoid chemical changes by sealing the samples inside a quartz capsule. There is no
need to place the entire system in vacuum.

There are still some shortcomings which need improvement. They include raising the sensi-
tivity and reducing the noise level of the sensor, shortening the turn-around time by cooling with
water or with compressed air circulation. All of these points are technically feasible. We hope
to improve the system with such considerations in a near future.
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ARCHEOMAGNETIC INVESTIGATION OF OHDATENO REMAIN
IN AKITA PREFECTURE

Tadashi NISHITANI and Chihiro SHIMURA

Institute of Mining Geology, Mining College,
Akita University, Akita 010 Japan

Archeomagnetic investigations were performed at Ohdateno
Remain. Ohdateno is in the northern part of Akita prefecture
(Fig.l). Figure 2 indicates an arrangement of houses and
furnaces. Total 145 specimens were collected in 13 furnaces
using a plastic case. An archeological age of this place are
interpreted in 10 to 11 century. Chronologically different
stages gathered there. SI-14 cuts the area of S8I-17 and SI-17
cuts that of 8I-18., The sequence of age, therefore, can be
interpreted as 8I-18, 17 and 14. We tried to specify its
orders and studied the relations between archeological ages and
archeomagnetic results.

We tried to specify their orders and studied the relations
between archeological ages and archeomagnetic results. Three
pilot samples from each furnace were demagnetized progressively
up to a peak alternating field of 45 mT and an optimum
alternating field was determined. Other specimens were
demagnetized using above optimum alternating field. Fig.3
shows some results of this treatment.

®
Ohdateno

Fig.l Ohdateno is in the northern part of
Akita Prefecture in Japan.
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Fig.2 Samples were collected in the furnaces. SI means
a house. An oval-shaped mark indicates a furnace.
All samples were collected from the furnaces.

Fig.3 Examples of results obtained after alternating
field demagnetization. Mark (+) indicate mean
inclinations and declinations. 0495 confidence
circle is also indicated.
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Table I summarized the results. Figure 4 showed the mean
inclinations and declinations. We applied correction in
declination and inclination values, which were determined
assuming that the Earth's magnetic field is a dipole field, to
the results of Hirooka (1971). It may be concluded that SI-17
and SI-15 are older than others. '

Reference

Hirooka, K. (1971) Mem. Fac. Sci., Kyoto Univ., Ser. Geol.
Mineral., 38, 167..

Table I Archeomagnetic results of Ohdateno remain.

Sample N Dec Inc k Ogg
SI1I-15 7 -12.366 54.164 147.853 4.981
S1-06 15 5.682 49.217 105.937 3.276
SI-14 4 2.896 52.124 373.149 4.763
SI-15"' 5 5.505  60.501 54.118 10.494
SI1-04 14 3.592 54.404 213.753 2.725
SI1-04" 5 12.633 51.526 21.046 17.069
SI1I-03 6 6.259 50.379 260.067 4.162
SI1-01 7 1.033 55.417 24,523 12.433
SI1-13 3 30.221 54.004 24.304 25.568
SI1-07 6 21.113 53.261 92.353 7.008
SI1-08 7 11.719 50.310 292,175 3.537
SI-05 10 12.810 53.049 57.225 6.440
SI1-17 3 -16.256 49.860 65.121 15.402

DEGLINATION

Fig. 4 Results of mean inclinations and declinations.
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A GEOMAGNETIC EXCURSION RECORDED IN A STALAGMITE (SPELEOTHEMS)
COLLECTED FROM WEST AKIYOSHI PLATEAU, JAPAN

Hayao MORINAGA!, Tkuko HORIE?, Haruko MURAYAMAZ, and Katsumi YASKAWA2

1, The Graduate School of Science and Technology, Kobe University, Nada,
Kobe 657, Japan
2. Faculty of Science, Kobe University, Nada, Kobe 657, Japan

1. Introduction

The existence of the geomagnetic excursion has been demonstrated
mainly by paleomagnetism of sediments and partly by paleomagnetism of
volcanics. A few problems, however, have been indicated; the possibility
that magnetic phenomenon like an excursion is spuriously recorded in
unconsolidated sediments because they are easy to distort physically and
the lack of ’temporal consistency’ and ’spatially consistency’ of proposed
excursions (Verosub and Banerjee, 1977),

Some excursions detected in sediments and volcanics; Mono Lake
excursion (Denham and Cox, 1971) and La Champ excursion (Roperch et al.,
1988) may be true phenomena of the geomagnetic field. Some interests are
still unclear; their occurrence was global or regional, how was their
fine-scale behavior, when they occurred and how long they lasted? This is
caused by detection of excursions in unconsolidated sediments whose
remanent magnetization seems to be a result of a convolution integral of
the geomagnetic field variation and a moment fixing function (Hyodo,
1984), and in volcanics which record only a short-time aspect of the
geomagnetic field., It is very important to detect a high-quality record
of excursions in continuously growing materials with a high time-
resolution,

Speleothems (secondary 13A_Stalagmite

deposits of limestone cave) i

. . . clear
continuously grow like sediments, hiatus.
Small amount of magnetic particles
are mixed into their growth layers -
and carry stable remanent higtds
magnetizations. Some ’ ;
paleomagnetic studies (Latham et ‘h-ggag/'
al., 1986; Morinaga et al., 1989) color
have reported that the remanent ro <fpgpow
magnetization of speleothems is a g {' \

fossil of the geomagnetic field at
deposition of thin growth layers
of calcium carbonate and that
speleothems are useful for
clarifying the past geomagnetic
field variation,

We got a stalagmite (one of
speleothems) collected from an
unnamed limestone cave in West
Akiyoshi Plateau, Yamaguchi
Prefecture, Japan through a
souvenir processing company. When 16 cm
we investigated the magnetic
stability and the reliability of Figure 1 Schematic view of the
the remanent magnetization of the vertical section of the stalagmite
sample, we detected the magnetic sample, §howing three clear growth

ST, . layers (hiatuses).
recording like a geomagnetic

|
{

whitish center part

T
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excursion.

2. Stalagmite sample and magnetic measurement

The stalagmite had a conical (a hanging bell like) shape, with a
diameter less than 16 cm and a height of 22 cm (Figure 1). Three clear
growth layers were observed by visual inspection. These clear growth
layers may correspond to growth hiatuses.” The stalagmite sample was
easily divided into blocks at two of three clear growth layers; outer and
inner layers. This suggests the existence of considerably long-period
growth hiatuses. As the outer (younger) part of a few centimeter thick
than the outer clear growth layer had been almost stripped and lost when
we got the stalagmite sample, we were able to obtain the geomagnetic
information in the corresponding period. The center part of the
stalagmite sample is whitish owing to a very small amount of impurities
and therefore is not suitable to measure its remanent magnetigzation.
234y/230Th dating method was performed on the sample taken out from the
center part.

Four time-equivalent samples were drilled from the stalagmite
sample; one of them drilled vertically and three drilled horizontally.
Each drilled sample was of 2.5 cm diameter and 6.5~ 11.5 cm in length.
The growth layers of time-equivalent samples had similar patterns, so that
simultaneous growth layers could be identified in respective samples from
their characteristic patterns. The growth layers’ patterns for four
samples (ISA-1, -2, -3 and -4) are shown in Figure 2. These four samples
were cut by a diamond. blade into 96 thin disc subsamples :of 2.0~ 3.0 mm
thick in order to measure their remanent magnetizations.

Magnetic measurements were carried out using a cryogenic
magnetometer whose sensitivity is 10-1!1 Ap2, Progressive alternating
field demagnetization (AFD) was performed on all disc subsamples in order
to examine the magnetic stability and to define the characteristic
component of their magnetization. During the progressive AFD, only 6 disc
subsamples, which had weaker remanent magnetization intensities by one to
two orders than normal subsamples, showed no stable component and
therefore was not used in latter discussion.

All the rest subsamples had a fairly to rather stable component.
The directions of the components changed only slightly during
demagnetizing up to 40 mT (partly up to 80 mT) and showed a Fisherian

ISA-4 ISA-3 [SA-2 ISA-1

Figure 2 Growth layers
observed in four drilled
samples. Lines indicate
correspondence of simultaneous
growth layers and solid lines
indicate correspondence of
clear growth layers
(hiatuses).
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distribution on the stereographic net. We determined the AF level range
of the Fisherian distribution of the direction on the net by visual
inspection and calculated the characteristic direction for each subsample,
which was a unit vectorial average of the data after AFD in the AF levels
of the range,

3. Results and discussion

The characteristic direction variations along the drilled sample
axes were consistent with each other, according to the correspondence of
growth layers observed for four drilled samples. Consistency of the
paleomagnetic results for a vertically drilled sample with those for three
horizontally drilled samples implies that the remanent magnetization of
the stalagmite is apparently unaffected by dip of the stalagmite surface.
The positions of all subsamples were adjusted to distance from the surface
of a ’master’ sample (ISA-4) by stretching and compressing the data. All
the results of direction (relative declination and inclination) for 90
subsamples are shown in Figure 3, Solid lines in this figure show
smoothed variations by the vectorial running-means method of a 5.0 mm
length, shifted with a 2.5 mm step. Arrows in this figure indicate the
positions of growth hiatusesg identified by visual inspection. . The
intermediate clear growth layer may not correspond to so long-period
growth hiatus, because of the smooth change of the direction data at the
position. .
In the inner {(older) part than the clear growth hiatus of 6.5 cm
distance from the surface, relative declination rotates by about 180° and
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Figure 3 Direction data of 90 Figure 4 Tentative correlation
subsamples from four drilled sample. between the direction variation for
In the older (innmer) part than the the ‘stalagmite described in the
inner growth hiatus, Fhe dlrect%on present study and that (shaded zone)
data gradually rotate in an opposite from paleomagnetism of unconsolidated
direction, sediments (M. Hyodo, personal

communication}.
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sign of inclination becomes reversed. This suggests the existence of some
geomagnetic reversal recorded in the stalagmite. The direction variation
for the outer (younger) part than the position of about 6.5 cm distance
from the surface is fairly well correlated with the geomagnetic secular
variation record for 4000 years of 6500 to 2500 yr. BP (Figure 4), which
has been obtained from paleomagnetism of unconsolidated sediments in Japan
(Masayuki Hyodo, personal communication). This fairly good correlation
show that the inner growth hiatus was over 6500 yr. BP and that the
geomagnetic reversal occurred at the older time before 6500 yr. BP. The
inner growth hiatus may correspond possibly to the last glacial period,
when ground water scarcely flowed into the limestone cave. The growth
layers recording the geomagnetic reversal may correspond possibly to the
former interglacial period.

A 234y/2307h age for the whitish center part is about 302 (+inf.,
-123) ka. Because of the low isotopic ratio of 230Th/232Th (11.2), which
indicates probably a contamination of the dated sample by detritic
sediments with the possibility of a source of 230Th different from a
disequilibrium source, it is possible that the age is between 300 and 350
ka but the most probably is older. The 23%U/230Th dating method was
performed on the growth layers recording the geomagnetic reversal.
However, the analysis of the sample had no good result because of the very
low 230Th/232Th ratio of 4.5, which indicates the possibility of
contamination by detritic Th. Datations were made by CERAK, Centre
d’Etudes et de Recherches Appliquees au Karst, Faculte Polytechnique de
Mons, rue de Houdain, 9, B-7000 MONS- Belgique.

On the basis of this age, the geomagnetic reversal seems to be an
excursion younger than 300 to 350 Ka. Some excursions (or events) have
been detected in a sediment core from Lake Biwa; their ages are about 18,
49, 110, 180 and 295 Ka (Nakajima et al., 1973; Yaskawa, 1974; Yaskawa et
al.,, 1973). The detected excursion in the stalagmite may correspond to
one of them, although the correspondence can not be defined.

Anyhow, it is very significant to detect a geomagnetic excursion
(reversal) in other material different from unconsolidated sediments and
volcanics. The geomagnetic reversal is situated at the distance of 7~ 9
cm from the surface. On the basis that the younger (outer) part than the
inner clear growth layer (hiatus) of 6.5 cm distance from the surface may
correspond to duration of about 4000 years, duration of the geomagnetic
reversal can be calculated to be
about 1200 years. The virtual vGP 0
geomagnetic pole during the
geomagnetic reversal passed nearly
along the meridian on Japan from the
South hemisphere to the North
hemisphere (Figure 5).
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Ch’i-Lin-Ts'o (Siling Co) is a closed lake in Tibet, China. In
August 1988, bottom sediments were collected from Ch’i-Lin-Ts’oc using a
pneumatical piston corer with an aim to obtain useful information of
paleoenvironmental secular change in Tibet.

Three cores were collected; CH8801, CH8802 and CH8803. Two cores
were long (3m) and one was short (1m). CH8803 core was longer one and
the sediments were composed of black to grayish white clay. CH8801 core
was longer, too, but the sediments were coarser than those of CH8803
core (sand to silt). In this paper we report the results of paleomag-
netic study and stable isotope analysis carried out for CH8803 core.

PALEOMAGNETIC STUDY

Ninty-nine sequential paleomagnetic samples were collected from
one side of replicated cores in 2.2X 2.2X 2.2 cm® non magnetic polycar-
bonate boxes. Natural remanent magnetization (NRM) of the samples were
measured with a ScT cryogenic magnetometer. The majority part of
samples has NRM intensities ranged from 10-7 to 10-¢ Am?2/kg. The rest
part of samples has more intense NRMs (Fig.1l).

Twenty-seven pilot samples were subjected to a stepwise alternat-
ing field (AF) cleaning, at levels of 3, 6, 9, 12, 15, 20, 25, 30, 35,
40, 45, 50, 55 and 60 mT (Fig.2). At lower AF levels, directions of

Int. ] NRM .
(Am2/kg] e
-6 .. \ * ° s.

10 ¢ et — t o i
o st 00 Ny o
o < % R . ©%
) ’. "..M

' 1 ’ 2 3 [n]

Figure 1. NRM intensity in log scale as a function of depth in meter
measured from the top of the core tube.
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remanent magnetization are con-
siderably stable. At higher AF
levels, the directions are scat-
tered. Stable components of
remanent magnetization are ob-
tained between 3-6 to 9-30 mT AF
levels for each sample.

All the rest samples were
subjected to a stepwise AF clean-
ing at levels of 3, 6, 9, 12, 15,
20, 25 and 30 nT. Directional
deviations between adjacent
samples are fairly large. Run-
ning mean curves of the direc-
tions after AF cleaning below 12
nT AF level seem to represent the
same variation pattern with each
other (Fig.3(a)). Above 12 mT
level the variation patterns are
different from each other (Fig.3
(b)), These deferences would be
attributed to instability of each
sample’s remanent magnetization
after high AF levels’ cleanings.
Average direction for each sample
was calculated using remanent
magnetizations measured after AF
cleanings ranged from 6 mT to 12
mT (Fig.3(c)).

© (X-Y plane).

225
{72.6 ¢cn)
— —t — X
245
1 { 1244 ¢n )
] p—t—t X
Y, Z i
T
é—t———{X Y.Z

LS
280
{206.7 cm )
Y. Z
Figure 2. Typical orthogonal vector

component diagrams for stepwise AF
cleaning. Closed circles represent end
point of remanence vector projected on
to a plane perpendicular to core axis
Open circles projected on
to a vertical plane (X-Z plane).

3 {a

Figure 3.
tensity after AF cleaning at levels of (a)0, 3, 6, 9 and 12aT;
20, 25 and 30mT, smoothed with a seven-point running mean, corresponding

~to a 15cm averaging interval.
marked every ten degrees.
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Average directions are still highly dispersed through the core.
Sample cases had arranged unidirectionally through transportation from
sampling site to our laboratory and through storage at the laboratory.
If samples had remagnetized between sampling and magnetic measurement,
resultant viscous components must have the same effect on the remanent
direction. Scattered directions cannot be attributed to this sort of
remagnetization., This dispersed pattern would reflect paleogeomagnetic
secular variation itself. The directions might have been scattered, of
course, by random magnetic noises acquired at and after deposition of
the sediments, and/or by sampling and measurement errors. Some averag-
ing technique such as sample mean and running mean can diminish such
random noises.

STABLE ISOTOPE

13¢/12C and 180/1€0 ratios in CaCO3 deposited from supersaturated
water are depend on their ratios in the mother water and its tempera-
ture. Standardized 13C/12C ratio (& !3C) and standardized 180/180Q ratio
(& 180) are good indicators of paleoenvironment.

The stable isotope analysis was performed on using the sanme
samples used for paleomagnetic measurement. Only even numbered samples
were used for this analysis. The results of & 13Cppp, & 180smow and COz
gas recovery rate are plotted in figure 4.

C0z gas recovery rates reflect the volume of CaCO3 contained in
sediment. Variation of the recovery rates contrast with the NRM inten-
sity variation. This fact supports the idea that the NRM intensity
reflect the concentration of magnetic minerals.

On the basis of changes of & 13C, & 180 and CO2 gas recovery rate,
CH8803 core was divided into three sections.

First section (I ) is correspond to depth level ranged from bottom
of the core to 2 m. This section is characterized by rapid decrease of
&8 180, increasing & 13C and unstable recovery rate. Instability of the
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recovery rate might reflect the disturbance of lake water volume caused
by inflow of sediments and water, and heavy rain fall.

Second section (Il ) is correspond to depth level ranged from 2 m
to 1.1 m. This section can be regarded as the period of stable environ-
ment. There are slight increase in &§ 13C and slight decrease in & 180,
During this epoch the environment around Ch’i-Lin-Ts’o would have been
controlled under steady state.

Third section (Il ) is correspond to depth level upper than 1.1 m.
In this section variations of three variables agree with each other.
Increasing & 13C and & 180 indicate that supply of light water (low &
13C and & 180; i.e. rain) generally decreased and/or evaporation of
light water and degas of light CO2 generally flourished in this period,
though in short time inflow of water and rain fall increased and there-
fore lake water was diluted isotopically (indicated by arrows in figure
5)., It may suggest the existence of the dry environment more lately in
Tibet.

(to be submitted to Earth Planet. Sci. Lett.)

41




PALEOINTENSITY AT THE 75,000 YEARS B.P.

Hideo SAKAI
Department of Earth Sciences, Faculty of Science
Toyama University, Toyama 930

The paleointensity of the paleolithic age was obtained at
the Douara site (34°38.5'N, 38°27.5'E) in Syria. The oriented
samples were collected from the baked earths in the fireplace at
the Douara cave (Akazawa and Sakaguchi, 1987). The mean NRM
direction shows the Declination of 11.8° and Inclination of
53.5°. The paleointensities were estimated by the Thellier's
method. The results in Table 1 indicate that the geomagnetic
intesity was about 65% of the present. The age of this Douara
site was determined by three methods. The age by both Cl14 method
and TL method shows that this site is older than 50 thousands
vears B.P. Fission track age by Nishimura (1979) suggested the
age of 75,000 years B.P. ‘

Table 1. Results of the paleointensity experiments by the
Thellier's method.

Specimens with the same integral number were cut from the same block sample of baked earth.
F: determined past geomagnetic intensity; Fb: standard error of intensity; T1 and T2: tem-
perature interval where NRM-TRM relation is linear; N: the number of points in this tempera-
ture interval; C.C: coefficient of correlation of the points.

cime: T - T2 N
st ) N ce ) D
1.1 0 320 7 0.997 28.7 1.0
1.2 60 380 6 0.991 341 2.3
1.3 0 320 7 0.996 32.8 1.2
21 60 320 5 0.993 240 1.6
22 undetermined
34 0 260 6 0.992 23.0 1.4
3.2 0 ' 380 7 0.997 28.8 1.0
33 0 320 7 0.993 26.9 1.4
4.1 0 430 9 0.996 36.2 12
4.2 0 380 7 0.979 29.6 2.8
4.3 0 430 8 0.99% 29.2 0.9
51 0 150 4 0.951 38.4 8.8
5.2 undetermined
6.1 0 150 4 0.997 39.9 2.3
6.2 undetermined
YA T ' 0 210 5 0.998 22.7 20
7.2 0 210 3 0.958 358 6.2
8.1 0 430 9 0.991 233 1.2
8.2 0 320 6 0.936 26.8 4.3

Averaged past-geomagnetic intensity
F=29.4+41 T
Dara with N(>7) and C.C(>>0.99) wére used for the calculation.

Figure 1 shows the paleointensity obtained from the Douara
site and the previously summarized data by McElhinny and
Senanayake (1986). The large intensity around 30 thousands B.P.
is considered to be caused by the lake Mungo excursion (Barbetti
and McElhinny, 1976). Figure 1 indicates, besides the large
intensity around Mungo event, the weak intensity is dominant from
765,000 to 20,000 B.P. Barbetti and Flude (1979) calculated the
effect of the paleointensities on the radiocarbon age by the
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method of Lingenfelter and Ramaty (1970). They suggested if the
paleointensity before 50,000 B.P. is as weak as that of 50,000
B.P., the age between 50,000 and 20,000 B.P. estimated by Cl4
method may be few thousands years younger than the absolute age.
The low intensity at 75,000 years B.P. suggests this possibility.
The preliminary data from the volcanic rocks in Hokuriku district
(Ogawa and Sakai, in prep.) show that the paleointesity around
120 thousands B.P. was similar to the present value, which
indicates the dominant low intensity has possibly existed from
the age older than 75,000 years B.P.

0.8 _
< .
= 06 N + McElhinny & Senanayake (1982)
g . 0 Sakal
+
E 0.4 -
I .
0.2 -
E o
2] +
A " ity
E 0 T
.+ +
4 L
2 +
g 0.2 - + * * é
o, B 4 ";‘
ﬁ -0.4 4 + +
& 7 +
0.6 . . — l : : :
0 20 40 60 80
Age(BP) - {Thousands)

Figure 1. The paleointensity obtained from the Douara site and
the paleocintensities summarized by McElhinny and Senanayake
(1982). The age of Douara site was estimated by Nishimura (1979).
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PALEOMAGNETIC STUDY ON MIYAKO-JIMA ISLAND IN THE SOUTH RYUKYU ARC

Masako MIKI! and Yo-ichiro OTOFUJIZ?

1. The Graduate School of Science and Technology,
Kobe University, Kobe 657, Japan
2. Department of Earth Sciences, Faculty of Science,
Kobe University, Kobe 657, Japan

Paleomagnetic direction of Ishigaki-jima Island in the south Ryukyu
arc shows that the area has undergone clockwise tectonic rotation since
10 Ma (Miki et al., 1989). The paleomagnetic study were carried out on
Miyako-jima Island north-east of Ishigaki-jima Island, in an attempt to
compare the paleomagnetic directions of the two islands.

Samples were collected from the Shimajiri Group (Fig. 1), for which
the age of about 4 Ma were reported (Kuramoto and Konishi, 1988). The
samples consist of fine clay from 20 sites and tuff from one site. Three

Shimajiri G.

5 km

Fig.1 Map showing the distribution of the Shimajiri Group on Miyako-
jima Island. Solid circles are sampling localities.
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or four oriented large block
samples were collected by
hand sampling from each clay
About ten 2.5 cm cubic
specimens were cut from each
block sample.
coated with acrylic fiber.
Ten block samples were col-
lected from the tuff site,
and two or three 2.5 cm core
specimens were cut from each
block sample.

The stability of
remanent magnetization was
examined through progressive
demagnetization of both al-
ternating field and thermal
technique. The orthogonal
demagnetization plot shows
well defined single mag-

site.

Specimens were

netization component are
resolved by both demag-
netization methods (Fig.2).
The component was taken by
the principal component
analysis by Kirschvink
(1980).

Reliable paleomagnetic
directions were obtained
from 12 sites (Fig.3). Both
normal and reversed polarity
were observed. The mean
direction after tilt correc-
tion is D = -1.5°, I = 27.0°
and a9s5 = 12.5°. The direc-
tion shows no deflection
from northward, contrasting
with the clockwise deflec~-
tion in the Eocene and 10 Ma
paleomagnetic direction of
Ishigaki-jima Island.

The geomorphological
data shows,

a W(UP) w(up)

Th demag. I

AF demag.

NRM 490°c

%%o—oi:l\:o“
e .

i

E(POWN) E{DOWN)

b W(up) W(UP)
T Th demag.
NRM

100 °C

+
T

.
E(DOWN)

E(DOWN)

Fig.2 Typical examples of the orthogonal
projection plots for NRM stability ex-
aminations. a: demagnetization path for a
tuff sample. b: demagnetization path for a
clay sample. Open (solid) symbols show the
magnetic vectors projection on the verti-
cal (horizontal) plane. Th demag = thermal
demagnetization. AF demag = alternating
field demagnetization.

that there are no such large fault as cut the Ryukyu arc be-

tween Miyako-jima Island and Ishigaki-jima Island (Hamamoto et al.,
1979). Miyako-jima Island and Ishigaki-jima Island appears to be con-
tained in one rigid block. The paleomagnetic results indicate that
Miyako-jima Island has not rotated since 4 Ma. We concluded that 1)
Miyako-jima Island has been subjected to the clockwise rotation together
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Fig.3 Site mean paleomagnetic
directions with 95 % confidence
circles from the Shimajiri

Group on Miyako-jima Island.
Projections are equal area,
solid (open) symbols on the
lower (upper) hemisphere. Star:
mean direction.

with Ishigaki-jima Island as a rigid block since 10 Ma, 2) the rotation
of south Ryukyu arc finished before 4 Ma. '
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PALEOMAGNETIC STUDY ON THE CENTRAL RYUKYU ARC
- KINEMATIC HISTORY OF THE RYUKYU ARC -

Masako MIKI!', Shinya KONDO? and Yo-ichiro OTOFUJIZ2

1. The Graduate School of Science and Technology,
Kobe University, Kobe 657, Japan
2. Department of Barth Sciences, Faculty of Science,
Kobe University, Kobe 657, Japan

Paleomagnetic and Geochronological study were carried out on Ter-
tiary rocks from Okinawa—-jima Island and Kume-jima Island of the central
Ryukyu are, in an attempt to see the kinematic history of the Ryukyu arc.
The south Ryukyu arc has been

rotated clockwisely since 10 Ma @ wwpm W(uP)
(Miki et al.,1989). 1In this T
study, we determined the relative AF DEMAG. jF Th. DEMAG

tectonic movement of the central
Ryukyu with respect to the south
Ryukyu arc. . s
More than 200 samples were
collected from 21 sites. The
samples consist of dike rocks (3
sites) and Miocene sedimentary
rocks (1 site) from Okinawa-jima

E(DOWN) E(DOWN)
Island, and lava flows of the
Aradake Formation (12 sites) and
lava flows of the Uegusukudake b w(ue) W(UP)
Formation (5 sites) from Kume- AF DEMAG. T Th. DEMAG. T

jima Island. 10

The K-Ar whole rock daﬁing
was attempt on lava flows from 1
Kume=jima Island. The amount of
radiometric argon was measured
using the method of Nagao and
Itaya (1988). We obtained the age T
of 17.0 + 0.4 Ma and 17.9 £ 0.4
Ma from the Aradake Formation,

S b—p—t—t — s

NAM
E{DOWN)

E(DOWN)

and the age of 2.2 * 0.1 Ma from
the Uegusukudake Formation.

Stability of remanent mag-
netization was examined through
progressive demagnetization of
both alternating field and ther-
mal technique. The stable high
temperature component was defined
as a linear segment decaying

Fig.1 Typical examples of orthogonal
projection plots for progressive
demagnetization experiments. a:lava
flows of the Aradake Formation; b:lava
flows of the Uegusukudake Formation.

Th demag = thermal demagnetization.
AF demag = alternating field demag-
netization. Open (solid) symbols show

the magnetic vectors projection on the
vertical (horizontal) plane.
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Fig.2 Declinations’ of the paleomagnetic directions for the Ryukyu arc.
(a) Direction of a dike of 11 Ma from Okinawa-jima Island; (b) mean
direction of the 17 Ma Aradake Formation; (c¢) mean direction of the 2 Ma
Uegusukudake Formation. (d) Mean direction for the Eocene volcanics; (e)
direction of a dike of 10 Ma (Miki et al., 1888).

toward the origin on the orthogonal plot (Fig. 1). The high temperature
components were taken by the principal component analysis by Kirschvink
(1980).

Reliable paleomagnetic directions were obtained from fourteen sites;
D=-9.6°, I1=48.5° from a dike rock with the age of 11 Ma (Daishi et al.,
1982) on Okinawa-jima Island, D=8.5°, 1=39.7°,@95=9.8° from nine sites
of the Aradake Formation and D=-1°, I=40.5°, «a95=33.6° from four sites
of the Uegusukudake Formation on Kume-jima Island. These directions are
almost same as the present axial dipole field direction. ‘

These results indicate that the central part of the Ryukyu arc has
undergone little rotation or translation since 17 Ma. Comparison with the
paleomagnetic direction of the south Ryukyu arc (Fig. 2) suggests that
the central Ryukyu arc has behaved as the different block from the south
Ryukyu arc since 10 Ma.
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FAST DRIFTING OF SOUTHWEST JAPAN
INFERRED FROM PALEOMAGNETISM AND K-Ar DATING

YO-ICHIRO OTOFUJI%, TETSUMARU ITAYAXx
AND
TAKAAKI MATSUDA%oKx

% Department of Earth sciences, Faculty of Science,
Kobe University, Kobe 657, Japan
%% Hiruzen Research Institute Okayama Branch,
Okayama University of Science, Okayama 700, Japan
%%¥ Department of Geology, Himeji Institute of Technology,
Himeji 671-22, Japan

Miocene volcanic rocks have been sampled from the San’'in
district in the central part of Southwest Japan, in an attempt
to evaluate the drifting velocity of Southwest Japan. Twenty

nine localities have
ROTATION reliable data of both
raleomagnetic direction
o 20° 4 ¢ and K—-Ar dating. A
5 ) N . A LS declination value of
40.6° is observed in
the Kawai Formation of
16,1 *+ 1.4 Ma, whereas
a northerly direction
(D=1.8") is in the
Omori Formation of 14.3
+ 0.6 Ma. The Matsue
Formation of 11.3 =&
0.3 Ma shows northerly
18:1.5 declinations. These
‘ Mmy. data indicate that
Southwest Japan rotated
clockwise 40° between
16,1 £ 1.4 Ma and 14.3
+ 0.6 Ma. Compared
with the amount of
rotation of Southwest
Japan estimated on the
basis of the Cretaceous
paleomagnetic data
(Otofuji and Matsuda,
; 1987), more than 80 %
80Ma of the clockwise rota
100 £ tion of Southwest Japan
100 Ma occurred later than
16.1 Ma ((Fig. 1.

MATSUE

OMORI
s |

KAWAI

T

)
Rt

Thsinm

Fig., 1. Rotation with respect to eastern part . of Eurasia ver-—
sus age for geologic unit in the San’in district of Southwest
Japan. The rotation error bars are the AR= sin"l(sin «
gg/cos(I)) where I and agg are Inclination and radius of 95 %
confidence about the mean direction. The age error bars are
the 95 % conflidence limit. Shaded rotation zone is amount of
clockwise rotation of Southwest Japan with respect to eastern
part of Eurasia estimated on the basis of the Cretaceous (80—
100 Ma) paleomagnetic data (Otofujli and Matsuda, 1987).
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The large rotational motion of 40° has spanned as little
as 1.8 £ 1.5 Myr. The angular velocity of Southwest Japan
about the rotation pivot of 129°E, 34°N reached 22" /Myr at
about 15 Ma. We thus conclude that the eastern part of South—
west Japan moved at a rate of 23 cm/year. The high drifting
velocity implies that the low viscous asthenosphere of the or-—
der of 1017 ~ 1019 Poise prevailed beneath the area of the

Southwest Japan—Japan Sea system at about 15 Ma.
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PALEOMAGNETIC STUDY AND FISSION-TRACK DATING
IN YANAGAWA AND TAKADATE AREA, NORTHEAST JAPAN

Hirokuni ODA”, Masayuki TORH" and Akira HAYASHIDA™

"Department of Geology and Mineralogy, Kyoto University, Kyoto 606, Japan
**Laboratory of Earth Sciences, Doshisha University, Kyoto 606, Japan

Paleomagnetic study and fission track dating were carried out on the Miocene
sediments and volcanic rocks in the Yanagawa and the Takadate areas, Northeast Japan.
These areas are situated in the northern margin of the Abukuma massif which mainly
consists of the Mesozoic gfanitic rocks. The Abukuma massif is bordered by two large
tectonic faults. One is the Futaba fault on the eastern margin and the other is the
Tanakura fault on the southwestern margin (Fig. 1).

In these areas, basalt, andesite and rhyolite lava flows and pyroclastic layers
unconformably overlie the granitic basement and there are some intrusive rocks (Fig. 2).
The Ryozen volcanic rocks are widely distributed in the Yanagawa area. Three K-Ar
dates were reported for these rocks as 14.1, 15.0, and 21.7 Ma (Kimura, 1988). In the
Takadate area, volcanic rocks of the Takadate Formation are distributed. K-Ar ages
obtained from these rocks are 12.6, 15.2, 20.7, and 22.0 Ma (Uto et al., 1989).

The volcanic rocks are covered by the sedimentary rocks which contain large
amount of volcanic material. In the Yanagawa area, the Yanagawa Formation cover the
Ryozen volcanic rocks. The Yanagawa Formation consists of tuffaceous sands and silt.
The sediments of the Yanagawa Formation is subdivided into three members (Suzuki
and Wako, 1987). The lower member is the Hirosegawa Member which consists of
coarse sand stone with many shell fossils. The middle part of the Yanagawa Formation
is called the Isazawa Member which bears planktonic foraminifera and calcareous
nannofossils. The upper part, the Ubagafutokoro Member, consists of pumiceous silt
and sand stone. The Hirosegawa Member is correlated to Blow’s N8 zone and the Isazawa
Member to N9~N10 by Suzuki and Wako (1987). In Takadate area the Moniwa
Formation which mainly composed of conglomerate covers the Takadate Formation
unconformably. The Moniwa Formation bears N8 planktonic foraminifera fossil. The
Moniwa Formation is covered with the Hatatate Formation. The Hatatate Formation
mainly consists of tuffaceous fossiliferous silt (Kitamura et al., 1986). The lower most
part of the Hatatate Formation is correlated to N9 and the middle part to N16 (Oda and
Sakai, 1977).

We collected about ten hand-samples for paleomagnetic study from each site.
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Fig. 1 Sample sites of the Yanagawa area (right) and the Takadate area (left). Base map
is from Suzuki and Wako (1987) and Kitamura et al. (1986).
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Fig. 2 Geologic columnar sections of the studied areas. Asterisks indicate sample sites.
Star represents datum of the biostratigraphic control by microfossils (Suzuki and Wako,
1987; Oda and Sakai, 1978). Open and Solid triangles denote fission- track dates by the
present authors and whole rock K-Ar dates (Kimura, 1988; Uto ét al., 1989).
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Samples for fission-track dating were collected to determine the ages of acidic volcanic
rocks from three sites. Natural remanent magnetizations are measured using a cryogenic
magnetometer (ScT C-112) and a spinner magnetometer (Schonstedt SSM-1A). Both
alternating field demagnetization (AFD) and thermal demagnetization (ThD) were
performed progressively on two or three pilot specimens from each site. We could obtain
stable remanent magnetizations from the volcanic rocks. Some of the sediments also
yielded stable components. The stability of the remanent magnetizations are confirmed
on the orthogonal projections diagrams (Fig. 3). Tilt corrections are carried out only on
the magnetic directions from the sediments. We rejected some sites which showed
instability against progressive demagnetization process. We selected sites that gave
stable magnetic components and whose AFD and ThD results agree well with each other.

Fission-track dating was carried out by external detector method (ETD) on
zircon crystals using internal surface and calibrated by zeta-value (Table 1).

Paleomagnetic directions obtained from volcanic rocks indicate both clockwise
and counter-clockwise deflection as shown in Fig, 4. The overlying sedimentary rocks,
however, exclusively show clockwise deflected directions after untilting (Fig. 4). We think
that the remanence of the sediments are reliable because of their stable and strong
magnetization. The age of the clockwise deflected sediments are assumed to be N8 in
terms of calcareous microfossils. Most of the reliable mean direction point clockwise
from the present axial dipole field throughout the studied area except some sites from
the Ryozen volcanic rocks (Fig. 4). This apparent inconsistency may be attributed to
unsuccessful tilt correction for the volcanic rocks. However most of the remanence of
the sedimentary rocks are of viscous nature. This fact may indicate another possibility to
explain the clockwise deflection due to the viscous magnetization.

Otofuji et al. (1985) reported that Northeast Japan had rotated
counter-clockwise about 50° between 20 Ma to 12 Ma as a result of the opening of the
Japan Sea. Taking account the ages (N8) and the clockwise directions from the studied
area, the areas rotated clockwise relative to the main part of the Northeast Japan. We
interpreted this inconstant rotation to the fault movement along the Futaba fault whose
maine tectonic phase has been estimated to be middle Cretaceous (Tsuneishi, 1978). If
the Futaba fault was reactivated as a right lateral strike slip fault, the Yanagawa and
Takadate areas could be rotated clockwise through mechanism called "ball bearing" (Beck,
1980) as shown in Fig. 5. Tsuneishi (1978) suggested that there were four tectonic stages
in the movement of the Futaba Fault. His second stage (early Miocene) of the fault
movement possibly brought about the block rotation of the studied areas. The second
stage movement is characterized by the normal fault caused by the EW-trending tensional
forces. However he could not find any line of evidence to indicate large-scale lateral
motion of the Futaba Fault during middle Miocene. Otofuji et al. (1985) reported a
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Fig. 3 Typical examples of progressive thermal demagnetization and progressive

alternating field demagnetization, projected on the vector orthogonal diagrams. (a) and (b)

show thermal and alternating field demagnetizations from the volcanic rocks, respectively.

(c) and (d) show thermal and alternating field demagnetizations from the sedimentary

rocks, respectively.

Sample N  spontaneous

irdused  dosimeter glass age(lo) P(x2)
name track track track
density density density
(x105ca~®) - (x105cm~3)  (x10%ca~3) (Ha) [¢3]
BM4II 10 1.17 1.82 14,84 16.2+0.7 88
FCTZRE 6 5.72 5.50 14.84 26.3%1.3 2
RI-34 8 3.51 2.67 8.82 19.8+£0.9 9
RZ-30 7 2.61 2.10 8.82 18.7%1.1 1
TK-3 3 2.83 3.85 8.82 13.8+1.0 12

Table 1. BM4II and FCTZR6 are age standard samples. N is number of zircon grains
measured, NBS-SRM612 is used for dosimeter glass. P(Kai?) is probability of obtaining
the observed value. We used 342.1 as zeta-value(Tagami, 1987).
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Ryovzen Formation Takadate Formation

<I15Ma-22Ma>

Yanagawa area Takadate arca

Fig. 4 Site-mean directions are illustrated on equal area projections. Directions from the
sedimentary sites are untilted. Paleomagnetic directions are arranged from bottom to top
in terms of their geologic age; bottom (15 - 22 Ma), middle (N8), and top (N9 - N11).
Right side of the figure indicate the data from the Takadate area, and left from the
Yanagawa area.

(2)
put

@ This study (sediments)
8 Simplified from Otofuji et al.(1985)

Fig. 5  "Ball-bearing" rotation of the crustal block. (a) Model showing "ball-bearing"
rotation of a small block sandwicthed between two large fault-bounded blocks in a sense of
Beck (1976). (b) Right lateral motion along the Futaba fault can explain clockwise
rotation of the studied areas. Solid circles show the paleomagnetic directions from the
sediments of the present study. Solid squares indicate paleomagnetic directions from
Northeast Japan simplified from Otofuji et al. (1985).
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couple of stable remanent magnetizations of clockwise deflected directions from the
western Asahi mountain area. They explained those anomalous direction to the movement
of the Tanakura fault which was activated by the opening of the Japan Sea. The
anomalous paleomagnetic directions may reflect local-scale tectonics which cannot be
detected by the previous geological studies. Detailed paleomagnetic study will reveal
actual process of the crustal movement accompanied with the large-scale tectonic
movement such as the opening of the Japan Sea.

References
Beck M.E. (1976) : Am. Jour. Sci., 276, 694-712.
Kimura K. (1988) : Rep. Tech. Res. Center, 15, 14-17.
Kitamura,N., T.Ishii, A.Sangawa, H.Nakagawa (1986) : Geology of the Sendai district,

Geol. Surv. Japan, 134p

Oda,M., T.Sakai (1977) : Prof. K.Fujioka Memorial Volume, Univ. Touhoku, 441-456.
Oda,M. (1986) : Prof. N.Kitamura Memorial Volume, Univ. Touhoku, 297- 312
Otofuji,Y., T.Matsuda, and S.Nohda (1985) : Earth Planet. Sci. Lett., 75, 265-277.
Suzuki,K., R.Wako (1987) : Sci. Rep., Univ. Fukushima, Fac. Education, 40, 33-48
Tagami, T. (1987) : Nucl. Tracks Radiat. Meas., 13, 127-130.
Tsuneishi,Y. (1978) : Bull. Earthq. Res. Inst., Univ. Tokyo, 53, 173-242.
Uto,K., K.Shibata and S.Uchiumi (1989) : Jour. Geol. Soc. Japan, 95, 865-872.

56




PRELIMINARY RESULTS FROM PALEOMAGNETISM ON APPARENT POLAR WANDER PATH
FOR THE SOUTH CHINA BLOCK

Yasuhisa ADACHI!), Hayao MORINAGA!’', Yu Yan LIU%),
Guo Zhu FANG2) and Katsumi YASKAWAS3)

1} The Graduate School of Science and Technology, Kobe University
' 1-1, Rokkodai-cho, Nada-ku, Kobe 657, Japan
2) China University of Geosciences (WUHAN)
Yujiashan, Wuhan, Hubei, People’s republic of China
3) Department of Earth Sciences, Faculty of Science, Kobe University,
1-1, Rokkodai-cho, Nada-ku, Kobe 657, Japan

China is composed of several distinct continental fragments separated
by accretionary fold belts (Zhang et al., 1984)., Paleomagnetic study has
been performed on sedimentary rocks from the Quaternary to the Precambrian
formations to establish an apparent polar wander (APW) path for South
China block. At the present, paleomagnetic data are few (McElhinny et
al., 1981; Chan et al., 1984; Lin et al., 1985; Kent et al., 1986), spe-
cially for Paleozoic and Proterozoic, to establish the APW path for the
South China block.

Oriented hand samples were collected from Wuchang (30.2°N, 114.3°E)
and Jingshan (31.2°N, 113.1°E) counties in Hubei province (Fig.1). The
sampling sites were distributed in formations of all the periods or eras
from the Quaternary to the Middle Proterozoic respectively (84 samples
from 17 sites){Table 1). The lithofacies of the samples are mainly lime-
stones and sandstones, only the Quaternary samples are unconsolidated clay
sediments.,

Remanent magnetizations of all specimens were measured with supercon-
ducting quantum interference device (SQUID). Natural remanent magnetiza-
tion (NRM) of most specimens was stable and the intensities distributed

S5'E
105°E
40N~ /D N “~
o Iy

. TRB

0

Fig.l1 Sketch map of eastern Asia (traced from Liou et al., 1989) showing
major tectonic units and paleomagnetic sampling localities (star symbols).
SCB, South China block; NCB, North China block; TRB, Tarim block; QLF
Qinling fold belt; SCF, South China fold belt. '

[ ] Fold Belt

B Major Non-Terminal Suture \
\ CJ
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Fig.2 Vector plots of a), alternating magnetic field (AF) demagnetization
method and b), thermal (TH) demagnetization treatment of samples (Middle
Proterozoic dolomite) from Jingshan area. Open circles plotted on verti-
cal planes and filled circles plotted on horizontal planes in geographic
coordinates,

8,49%X 10-2A/m (Quaternary sediment) to 1.48x 10-4A/m (Late
Each characteristic component was obtained
through thermal demagnetization treatment rather than alternating magnetic

field demagnetization method (Fig.2). All the specimens were demagnetized
Table 1 Characteristic site-mean directions for Quaternary to Middle
Proterozoic rocks in Wuchang and Jingshan of the South China block
In situ Tilt corrected YGPs
Era Period Site | Sa | Sp
Dec. Inc. k ass | Dec. Inc. k ass | Lat.('N) |Long.('E)
(luaternary 1~12 12 12 -2,21 413 10.0|15.2) -2.2} 473 10.0 ¢ 15.2 86.7 328.4
Cenozoic Tertiary 168 5 7 18.7 83.3 32.81 13.8 23.8 1.1 3.0 13.5 80.5 140.4
Crelacem;s 109 4 6 1-167.3} -34.8 20,2210} -168.5} -41.0 19.93 21.1 77.2 237.4
Jurassic 018 5 18 4.1 47.8 1.3128.8 1.5 ~15.2 2.7150.7
Mesozoic Triassic 105 5 8 -1.6] 67.61 13.3}17.2| -84.1 6.8 2.9142.8
Permian 106 5 g -3.91 42.04 60.8! 7.2% -96.9 -6.81 24.7111.4
206 4 4 -3.7 54,6 | 55.2116.8 10.9 11.1 64,8 | 15.5
Carboniferous ; 115 4 7 -5,5] 48.07 85.5{ 7.3|-104.9 6.5 89.21 6.5
Devonian 107 5 5 11,9} 36.4) 48,8113.3-103.8] -22.8] 48.513.3 17.8 199.8
Silurian 103 4 7 8.8 56,8} 92,1} 7.0}-100.2 48,01 72.71 7.9
Ordovician 102 5 7 8.21 .48.1 8.0} 7.5} -75.1 55.0 58.2| 8.9
late Cambrian| 101 4 6 46,6} 51.81 20.6]20.8{-134.9 67.3 38.5 ¢ 15.0 0.6 86.1
Paleazoic | early Cambriani 112 5 8 =271 4.3 5.7121.8) -43.2} 30.8 5.3130.9 48.2 13.0
| 113 4 8 11.6) 555} 128.3] 5.5 -64.2 75.5 51,71 8.5
late 111 4 6 |-174.5] -33.6} 122.7}11.21 135.3 -6.6] 160.8] 8.8 39.8 358.7
211 5 7 13,71 46.6] 131.3| 5.9 27.81 42.1| 108.0} 6.5
Proterozoic middle 110 4 -71.4 15.5 26.5[15.1} -60.0 10.7 17,31 18.9 28.3 115

Sa is the number of samples per site, from which Sp, the number of
specimens were measured. k is Fisher precision parameter of site-mean
direction. a 95 is radius of cone of 95% confidence on within-site and
overall means. VGPs are virtual geomagnetic poles calculated for site-
means after tilting corrections.
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Fig.3 Site-mean characteristic directions before tilting corrections.
Filled and open circles on lower and upper hemisphere, respectively, and
ellipses are 95% confidence circles of equal-area projections. Asterisk
symbol is the direction of the geocentric dipole field for sampling
locality. a, Quaternary (Q); b, Tertiary (E); c, Cretaceous (K); d,
Devonian (D); e, Late Cambrian (Cm); f, Early Cambrian (Z); g, Late
Proterozoic {Pta); h, Middle Proterozoic (Ptz).

through progressive thermal treatment and the characteristic component of
remanent magnetization for each site was separated using multivariate
technique of Kirschvink (1980). The site-mean paleomagnetic directions
for thermally demagnetized results are shown in Table 1. The high tem-
perature component was adopted for the site for rocks showing the charac-
teristic multi-component because of 1little possibility of secondary vis-
cous magnetization. The characteristic component for each site was ac-
cepted as reliable provided the following criteria were satisfied: a
remanent magnetization is stable with respect to progressive thermal
demagnetization and a site-mean direction before tilting correction is
different from the direction of the geocentric dipole field, suggesting
that the direction of remanent magnetization is not attributed at least to
recent secondary magnetization. i

- Eight sites were found to have a reliable primary magnetic component
through thermal demagnetization and selection using above mentioned
criteria. Paleomagnetic directions of these sites before tilting correc-
tion are plotted with associated circles 95% confidence in Fig.3. These
sites are from the formations of Quaternary (Q), Tertiary (E), Cretaceous
(K), Devonian (D), Late Cambrian (Cm), Early Cambrian (Z), Late (Pt3) and
Middle Proterozoic (Pt2). It is very significant that paleomagnetic data
for Paleozoic and Proterozoic were successfully obtained from present
study. .
Virtual geomagnetic poles (VGPs) calculated from the data after
tiling correction were shown in Fig.4. These pole positions were compared
with those previously reported for the South China  block. Kent et al.
(1986) reported the Cretaceous paleomagnetic pole (80.8°N, 296.8°E, a 95
=7.7°) from western Sichuan (26.5°N, 102,3°E) and another one (76.3°N,
172,6°E, @ 95=10.3") from Nanjing area (32°N, 119°E). These paleomagnetic
poles were shown in Fig.4 by triangular symbols, Our Cretaceous pole
position is located between the two poles of Kent et al. (1986) and is not
significantly different at the 95% confidence level.
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Fig.4 VGPs for the Quaternary to Middle Proterozoic rocks with associated
circle of 95% confidence. Poles shown by triangular symbols are reported
by Kent et al. (1986), N, Nanjing area; S, Western Sichuan. A dotted line
is APW path for the South China block demonstrated by Lin et al. (1985),
Ter, Tfertiary; Kz, Upper Cretaceous; Ki, Lower Cretaceous; J3, Upper
Jurassic; Jz, Middle Jurassic; Tr, Triassic; P, Permian; C3, Upper
Carboniferous; C1, Lower Carboniferous; Cm, Cambrian.

Lin et al. {1985) demonstrated the Phanerozoic polar wander path for
the South China block from paleomagnetic of several formations in Zhejing,
Guizhou, Yunnan and Hubei provinces. The polar wander curve was described
in Fig.4 by a dotted line. The paleomagnetic pole for Cretaceous rocks we
obtained for Hubei province (77.2°N, 237.4°, a 95=21.1°) agrees well with
lower Cretaceous one (76.2°N, 225.7°, «a 95=4.8°) of Lin et al. (1985). A
shape of APW path since Devonian from present study is similar to that of
Lin et al.(1985). The inconsistency on the Cambrian pole position may
have been caused by that Jingshan area had been subjected to the tectonic
deformation by Qinling orogenic movement because Jingshan is close to the
Qinling orogenic belt.
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1. Introduction

Recently geological and geochronological knowledges of Sri Lanka have
been accumurated in focused on reconstruction with Easf Antarctica. The
general reconstruction model has been proposed that Sri Lanka was situated in
Gondwana in the offing of Litzow-Holm Bay connected with the east Gunners
Bank in Enderby Land, East Antarctica (e.g. Collerson and Sheraton, 1986:
Yoshida and Funaki, 1987). Structural, petrological and metamorphic grade
are similar between the Highland Group of Sri Lanka and the granulite facies
portion of Lutzow-Holw Complex and between the eastern Vijayan Complex of Sri
Lanka and the Yamato Belgica Complex of eastern Queen Maud Land (Yoshida and
Funaki, 1987). This model is also supported by the geochronological
evidences (e.g. Grew and Manton, 1979).

However, very poor paleomagnetic study has been done for Sri Lanka up to
present. Funaki et al. (1988) carried out paleomagnetic reconnaissance of
Precambrian and Jurassic rocks of Sri Lanka using the samples collected for
geological studies. The results indicated that the dominant NRM directions
of the Highland Group form two clusters at 1=61.2°, D=260.4°, @ ¢5=5.8°
(cluster A) and 1=68.7°, D=349.0° and « g5=6.9°(cluster B). Many samples of
the Vijayan Complex showed relative low inclination without clear cluster
around the present geomagnetic field direction of Sri Lanka. Jurassic
dolerite dyke rocks showed the mean NRM direction of 1=24.6°, D=67.5° and
® g5=24.6° (cluster C), although number of sample was only 2.

The VGP positions obtained from the cluster A (latitude (Lat)=2.3°N,
longitude (Lon)=34.1°E) and cluster C (Lat=24.0°N, Lon=159.5°E) were
consistent with those of Cambro-Ordovician and Jurassic VGPs from East
Antarctica after rotation of Sri Lanka based on the model proposed by Barron
et al.,1978.

¥We obtained a total of 95 paleomagnetic samples from southern Sri Lanka.
The rock types are granite (Tonigala granite) and granitic rock from Tonigala
region, dolerite, biotite gneiss and pegmatite from Gallodai region, granite
(pink granite) and migmatite from Kandy region, charnockite from Mahiyangaran
region and gneissose granite and hornblende gneiss from Ambarangoda region.
The samples of biotite gneiss were collected systematically taking distance
into consideration of the dolerite dike at Gallodai region.

2. Basic magnetic properties

Representative 3 samples from each formation were selected for AF
demagnetization test up to 50mT. The stable NRM components were recognized
in Tonigala granite, pink granite, Gallodai dolerite, migmatite, gneissose
granite, pegmatite and biotite gneiss. The samples of hornblende gneiss have
either stable NRM or unstable one. However only unstable NRM was recognized
for charnockite and granitic rock from Tonigala region. Figure 1 shows
Zjiderveld projection of Gallodai dolerite, having a larger soft magnetic
component, which is demagnetized completely up to 20mT, associated with the
hard NRM component. The optimum demagnetized field intensities were decided
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to 30mT for every sample, except 35aT for pink granite, based on the results
of the Zjiderveld projections.

Thermal demagnetization test was carried out for the samples to have
stable NRM components in air from room temperature to 630°C at intervals of
50°C., The samples were supplied after being AF demagnetized to the optimunm
field. Unblocking temperatures (TBs) of NRH were observed between 530° and
580°C for Tonigala and pink granites, although demagnetization curves were
2igzag compared with those of the AF demagnetization. The unstable
magnetization is estimated due to oxidation of magnetic minerals and breaking
off of small parts of the samples during heat treatments. A clearly defined
TBs of NRM were obtained at 580°C and 330°C for Gallodai dolerite, as shown
in Fig. 2.. They are the TBs of the hard NRH component, because the sample
was already AF demagnetized to 30mT. Significant directional change of NRM
was not observed before and after the TB at 330°C. The TBs of NRM for gneiss
.. rocks and migmatite were distributed between 330° to 580°C, although it is
occasionally different TBs among same formations,

Thermomagnetic (Js-T) curves of the 1st and the 2nd run cycles in Fig. 3
were obtained for the samples of Tonigala granite, pink granite and Gallodai
dolerite from room temperature to 650°C by a magnetic balance under 0.4T
external magnetic field in 10”2Pa atmosphere. The Js-T curves of Tonigala
granite is completely reversible with Curie point at 580°C indicating single
phase of almost pure magnetite. By the microscopical observation, magnetite
grains smaller than 200um in diameter were observed - -in the sample. That of
pink granite is irreversible in the Ist run cycle; magnetization increases
after the cooling maintaining same Curie point. This phenomenon suggests
+that small amount of magnetite was produced by the heating. 1n this sample
magnetite grains smaller than 250um in diameter with ilmenite exolutions
were observed by the microscope. Very small amount of hematite was observed
along the grain boundary and cracks of the magnetite grains. The ‘increased
magnetization after the Ist run cycle is caused by reduction of this
hematite. The samples of Gallodai dolerite showed irreversible Js-T Curves
having Curie point at 575°C in the 1st run cycle. After the cycle the
magnetization decreased about 83% compared with original one. The 2nd run is
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reversible and consistent with the 1st run cooling curve, maintaining same
Curie point. Microscopical observation suggested that the magnetic grains
smaller than 100 xm in diameter were heavily oxidized; maghemite and/or
titanomaghemite veins were spread into the magnetite grains.

3. NRM direction

Every sample having stable NRM components was AF demagnetized by 3
steps; the respective optimum field and both of lower and higher 5mT than
that field. When ags showed the minimum value, mean NRM directions were
adopted for representative NRM direction of its formation. Reasonably good
clusters were obtained from Tonigala granite, pink granite and Gallodai
dolerite. The mean NRM intensity (R), inclination (I), declination (D),
precision (K) and a gz are listed in Table 1 and NRM directions with a
values are illustrateg in Fig. 4. The NRM directions of hornblende gneiss
and gneissose granite clustered unclearly around the present geomagnetic
field direction at present Sri Lanka, probably resulting VRM. Biotite gneiss

63




NRM distributions after AF demag.
to 30 or 35mT
0

D)
L

The mean NRM directions and « g5
values of (1) Tonigala granite,

(2) pink granite and (3) Gallodai
180 dolerite.

270

apd pegmatite within 10m from the dolerite dyke showed almost parallel NRM
dlrectlop to that of dolerite dyke. 1t may suggest that biotite gneiss was
remagnetlzed by heating of the dyke intrusion. However, the NRM directions
of migmatite scattered widely through the both hemisphere, although
individual samples have stable NRM components.

4. Discussion

Tonigala granite has almost pure magnetite grains estimated from the
Js-T curves. Since its NRM is very stable against AF and thermal
demagnetization, the NRM is believable paleomagnetically. The NRM of pink
granite is also stable, but a part of the magnetite grains were oxidized to
hematite. Hematite may be produced by the weathering in present judging from
its formation on the garins. As the amount of hematite is very small
compared with magnetite, the original NRY may not be so disturbed by the
hematite magnetization. On the other hand, a part of the NRM of Gallodai
dolerite is carried by maghemite and/or titanomaghemite, associated with the
magnetization resulting magnetiet. Biotite gneiss remagnetized evidently by
the dolerite intrusion showed the NRM direction toward that of Gallodai
dolerite. It indicates that the NRM direction of Gallodai dolerite did not
be disturbed by the formation of maghemite and/or titanomaghemite. From
these estimations the NRM of Tonigala granite, pink granite and Gallodai
dolerite can be believed.

Geochronological ages have been obtained from Tonigala granite (for
instance 986+ 28ma by Rb/St of total rock (Crawford and Oliver, 1969) and
558+ 14ma by U/Pb of zircon (H0lz]l and Kohler, 1987)). The ages may indicate
the times intruded at middle Proterozoic and metamorphosed at Cambrian
respectively. A Cambrian age (580% 7ma; U/Pb in zircon) has been reported
from a similar rock with pink granite around Kandy region (Kroner et al.,
1987). Many data from 460 to 520ma (late Cambrian to middle Ordovician) by
Rb/Sr age have been reported from whole Sri Lanka. Since the age determined
by U/Pb method shows older age than that of Rb/Sr one generally, it can be
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Table 1. Paleomagnetic results of Sri Lanka and some previous results for
East Antarctlica : -

H
!
i

No site dem N 1 D K ags Lat Lon Laty  Long
1 Tonigala 0 13 31.6 230.3 10 18.5 '

granite 30 55.5 275.2 45 6.2 6.1S 28.0E 10.7S  .21.BE
2 pink 0 13 40.9 358.9 3 33.5 ‘

granite 35 63.8 301.9 15 11.0 27.IN  38.5E 23.2S  55.5E
3 Gallodai 0 17 31.2 74.7 7 14.5

dolerite 30 33.6 88.3 32 6.4 8.5N 152.9E 45.25 152.0W
4 biotite 0 5 34.3 151.3 2 73.5

gneiss 30 17.7 76.2 45 11.5 14.IN 162.9E 35.85 160.9W
5 oOngul I. 10 80 59.1 336.8 14 4.5 20.28 20.7E
6 Wright V. 15 26 -69.4 237.6 137 2.4 45.35 152.0¥

* after rotation: rotation Lat=5.3°S, Lon=23.8°E and w=-100.5

understood that wide areas of Sri Lanka were metamorphosed at late Cambrian
to middle Ordovician. These areas might be magnetized or remagnetized at
that period.

The NRM directions of Tonigala and pink granites were consistent each
other taking their ags values into consideration. In the paleomagnetic
reconnaissance of Sri fanka (Funaki et al., 1989), the NRM directions of many
granites and gneisses showed (Cluster A) toward the same directions to these
granites in this study. Therefore it seems that they were acquired NRM at
almost same time. However, as the age of Tonigala granite (Holzl and
Kohler, 1987) was determined directly using the samples which are collected
from a same outcrop for our sampling site, the paleomagnetic data of Tonigala
granite is adopted for the representative data of late Cambrian to middle
Ordovician of Sri Lanka in this study.

Age of Gallodai dolerite has been reported as 152.6+7.6 and 143.3 %
7.2ma by K/Ar of total rock by Yoshida et al., 1989. It indicated that the
dolerite was magnetized at the latest Jurassic or the earliest Triassic. The
NRM direction I=33.6°, D=88.3° and a g5=6.4° is essentially consistent with
the previous result of Gallodai dolerite (1=24.6°, D=67.5° and a gz=21.7°).

Funaki and Wasilewski (1986) reported a VGP position of horng?ende
gneiss, amphibolite and granite from Ongul Island in Lutzow-Holm Bay as
Lat=20.2°5, Lon=20.7°E and «g5=4.5°. These rocks were estimated to be
remagnetized or intruded at Cambro-Ordovician. On the other hand, many
Jurassic VGP positions have been reported from Ferrar dolerite along the
Transantarctic Mountains. One of them is Lat=45.3°S, Lon=152,.0°¥ and
X g5=2.4° for Wright Valley (Funaki, 1983). Sri Lanka has been estimated to
be a Gondwana fragment connected with Litzow-Holm Bay (e.g. Barron et al.,
1978). Therefore the reconstruction of Sri Lanka and Lutzow-Holm Bay is
available using the Cambrian to Ordovician VGP positions from Tonigala
granite and Ongul Island, and Jurassic ones from Gallodai dolerite and Ferrar
dolerite. :

The VGP positions calculated from Tonigala and pink granites and
Gallodai dolerite were rotated with respect to East Antarctica referred a
rotation point Lat=5.3°S Lon=23.8°FE and an angle (w)=-100.5°
(counterclockwise). The rotation point and w were determined by fitting
VGPs of Tonigala granite and Ongul Island and those of Gallodai dolerite and
Ferrar dolerite. The latitude and longitude of the VGPs after the rotation
are listed in Table 1. When Sri Lanka is rotated according to that rotation,
it situates at offing of eastern Queen Kaud Land. This result supports the
hypothesis that Sri Lanka connected to the east Gunners Bank in Lutzow-Hola
Bay taking their « g5 value consideration. Figure 5 shows a plausible
reconstruction models of Litzow-Holm Bay and Sri Lanka based on the
declination of NRM and its 95% probability for Tonigala granite and the
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result of Ongul Island; Sri Lanka is rotated to Llitzow-Holm Bay adjusting the
declination of Tonigala granite to that of Ongul Island. The NRM
inclinations of Tonigala granite and Ongul Island are consistent each other,
as I=56.8° and 1=59.1° respectively, suggesting higher possibility. of this
reconsiruction model. This model has no discrepancy with recent
reconstruction models being considered by geology, geochronology, and 2000m
isabath. :

5. Conclusions

Tonigala and pink granite have stable NRM carried by magnetite, and the
stable NRM was magnetized at late Cambrian to middle Ordovician. Gallodai
dolerite was -magnetized at late Jurassic, although magnetic minerals (low
titanium titanomagnetite) have been oxidized partially. These results are
consistent with previous paleomagnetic study for Sri Lanka. Biotite gneiss
along Gallodai dolerite was remagnetized by the dolerite intrusion at late
Jurassic. However other gneiss, migmatite and pegmatite did not make a
significant cluster of NRM directions.

Sri Lanka was rotated to East Antarctica referred VGPs: of Tonigala
granite, Gallodai dolerite, Ongul Island and Ferrar dolerite. Conseguenlly,
Sri Lanka is situated at offing of eastern Queen Maud Land including Litlzow-
Holm Bay. The most reliable reconstruction of Sri Lanka and Liitzow-Holm Bay
was proposed based on the NRM directions.
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